1
|
Zeng Z, Gong S, Quan C, Zhou S, Kulyar MFEA, Iqbal M, Li Y, Li X, Li J. Impact of Bacillus licheniformis from yaks following antibiotic therapy in mouse model. Appl Microbiol Biotechnol 2024; 108:139. [PMID: 38229401 DOI: 10.1007/s00253-023-12866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2024]
Abstract
Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.
Collapse
Affiliation(s)
- Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, China.
| |
Collapse
|
2
|
Hirst BC, Dibrov E, Hirst SD, Pierce GN. Physiological and Pathological Considerations for the Use of Flaxseed as a Therapeutic Dietary Strategy. Rev Cardiovasc Med 2023; 24:149. [PMID: 39076734 PMCID: PMC11273038 DOI: 10.31083/j.rcm2405149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 07/31/2024] Open
Abstract
The inclusion of flaxseed in the diet may have a great number of potential benefits for the well-being of both healthy individuals and those challenged by disease conditions as well. With an increase in the number and quality of studies focused on the physiological and pathophysiological effects of dietary flaxseed, our knowledge concerning the rationale for the inclusion of flaxseed in our diet has become more convincing and stronger. The purpose of this review is threefold. First, the review will comprehensively document the evidence supporting the value of dietary flaxseed to improve bodily health in both normal and disease conditions. Second, this review will identify the mechanisms of action responsible for these effects. Finally, this article will review practical aspects relevant to the inclusion of flaxseed in the diet. Briefly, supplementing the diet with flaxseed has beneficial effects on the treatment and/or prevention of different kinds of cardiovascular disease (hypertension, ischemic heart disease, myocardial infarcts, atherosclerosis), non-alcoholic fatty liver disease, breast cancer, bone strength, menopause, diabetes, and wound healing. Although some controversy exists on the component within flaxseed that provides these beneficial actions, it is likely that the rich content of the omega-3 fatty acid, alpha linolenic acid, is primarily responsible for the majority of these biological effects. It is concluded that the constantly expanding evidence in support of the inclusion of flaxseed in our daily diet to provide significant health benefits strongly encourages the initiation of additional work on dietary flaxseed in order to both confirm past findings as well as to further advance our knowledge regarding the important biological actions of dietary flaxseed.
Collapse
Affiliation(s)
- Broderick C. Hirst
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, Canadian Centre for Agrifood Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Canadian Centre for Agrifood Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Susan D. Hirst
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, Canadian Centre for Agrifood Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Grant N. Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, Canadian Centre for Agrifood Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
3
|
Li L, Li K, Bian Z, Chen Z, Li B, Cui K, Wang F. Association between body weight and distal gut microbes in Hainan black goats at weaning age. Front Microbiol 2022; 13:951473. [PMID: 36187995 PMCID: PMC9523243 DOI: 10.3389/fmicb.2022.951473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota plays a critical role in the healthy growth and development of young animals. However, there are few studies on the gut microbiota of young Hainan black goats. In this study, 12 three-month-old weaned lambs with the same birth date were selected and divided into the high body weight group (HW) and low body weight group (LW). The microbial diversity, composition, and predicted function in the feces of HW and LW groups were analyzed by collecting fecal samples and sequencing the 16S rRNA V3-V4 region. The results indicated that the HW group exhibited higher community diversity compared with the LW group, based on the Shannon index. The core phyla of the HW and LW groups were both Firmicutes and Bacteroidetes. Parabacteroides, UCG-005, and Bacteroides are the core genera of the HW group, and Bacteroides, Escherichia-Shigella, and Akkermansia are the core genera of the LW group. In addition, genera such as Ruminococcus and Anaerotruncus, which were positively correlated with body weight, were enriched in the HW group; those genera, such as Akkermansia and Christensenellaceae, which were negatively correlated with body weight, were enriched in the LW group. Differential analysis of the KEGG pathway showed that Amino Acid Metabolism, Energy Metabolism, Carbohydrate Metabolism, and Nucleotide Metabolism were enriched in the HW group, while Cellular Processes and Signaling, Lipid Metabolism, and Glycan Biosynthesis and Metabolism were enriched in the LW group. The results of this study revealed the gut microbial characteristics of Hainan black goats with different body weights at weaning age and identified the dominant flora that contributed to their growth.
Collapse
Affiliation(s)
- Lianbin Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Kunpeng Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhengyu Bian
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zeshi Chen
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Boling Li
- Hainan Extension Station of Animal Husbandry Technology, Haikou, Hainan, China
| | - Ke Cui
- Hainan Extension Station of Animal Husbandry Technology, Haikou, Hainan, China
| | - Fengyang Wang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
- *Correspondence: Fengyang Wang,
| |
Collapse
|
4
|
Kleigrewe K, Haack M, Baudin M, Ménabréaz T, Crovadore J, Masri M, Beyrer M, Andlauer W, Lefort F, Dawid C, Brück TB, Brück WM. Dietary Modulation of the Human Gut Microbiota and Metabolome with Flaxseed Preparations. Int J Mol Sci 2022; 23:ijms231810473. [PMID: 36142393 PMCID: PMC9499670 DOI: 10.3390/ijms231810473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Flaxseeds are typically consumed either as whole flaxseed, ground flaxseed, flaxseed oil, partially defatted flaxseed meal, or as a milk alternative. They are considered a rich source of vitamins, minerals, proteins and peptides, lipids, carbohydrates, lignans, and dietary fiber, which have shown hypolipidemic, antiatherogenic, anticholesterolemic, and anti-inflammatory property activity. Here, an in vitro batch culture model was used to investigate the influence of whole milled flaxseed and partially defatted milled flaxseed press cake on the gut microbiota and the liberation of flaxseed bioactives. Microbial communities were profiled using 16S rRNA gene-based high-throughput sequencing with targeted mass spectrometry measuring lignan, cyclolinopeptide, and bile acid content and HPLC for short-chain fatty acid profiles. Flaxseed supplementation decreased gut microbiota richness with Firmicutes, Proteobacteria, and Bacteroidetes becoming the predominant phyla. Secoisolariciresinol, enterodiol, and enterolactone were rapidly produced with acetic acid, butyric acid, and propionic acid being the predominant acids after 24 h of fermentation. The flaxseed press cake and whole flaxseed were equivalent in microbiota changes and functionality. However, press cake may be superior as a functional additive in a variety of foods in terms of consumer acceptance as it would be more resistant to oxidative changes.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching b., 85748 München, Germany
| | - Martine Baudin
- Institute of Life Technologies, School of Engineering, HES-SO University of Applied Sciences and Arts Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Thomas Ménabréaz
- Institute of Life Technologies, School of Engineering, HES-SO University of Applied Sciences and Arts Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Julien Crovadore
- Plants and Pathogens Group, Research Institute Land Nature and Environment, Geneva School of Engineering, Architecture and Landscape (HEPIA), HES-SO University of Applied Sciences and Arts Western Switzerland, 1254 Jussy, Switzerland
| | - Mahmoud Masri
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching b., 85748 München, Germany
| | - Michael Beyrer
- Institute of Life Technologies, School of Engineering, HES-SO University of Applied Sciences and Arts Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Wilfried Andlauer
- Institute of Life Technologies, School of Engineering, HES-SO University of Applied Sciences and Arts Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - François Lefort
- Plants and Pathogens Group, Research Institute Land Nature and Environment, Geneva School of Engineering, Architecture and Landscape (HEPIA), HES-SO University of Applied Sciences and Arts Western Switzerland, 1254 Jussy, Switzerland
| | - Corinna Dawid
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Chair of Food Chemistry and Molecular Sensory Science, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas B. Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching b., 85748 München, Germany
| | - Wolfram M. Brück
- Institute of Life Technologies, School of Engineering, HES-SO University of Applied Sciences and Arts Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
- Correspondence: ; Tel.: +41-58-606-86-64
| |
Collapse
|
5
|
Gruneck L, Gentekaki E, Kespechara K, Denny J, Sharpton TJ, Marriott LK, Shannon J, Popluechai S. The fecal microbiota of Thai school-aged children associated with demographic factors and diet. PeerJ 2022; 10:e13325. [PMID: 35469202 PMCID: PMC9034706 DOI: 10.7717/peerj.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Abstract
Background Birth delivery method and breastfeeding practices contribute to microbiota colonization. Other factors including diet and demographic factors structure the gut microbiome assembly and diversity through childhood development. The exploration of these factors, especially in Southeast Asian children, remains limited. Methods We investigated the fecal microbiota of 127 school-aged children in Thailand using quantitative PCR (qPCR) to assess the influence of diet and demographic factors on the gut microbiota. Multivariate analysis (multiple factor analysis (MFA) and Partial Least Squares Discriminant Analysis (PLS-DA)) were used to link particular gut microbes to diet and demographic factors. Results Diet and demographic factors were associated with variation among gut microbiota. The abundance of Gammaproteobacteria increased in children with infrequent intake of high fat foods. Obese children possessed a lower level of Firmicutes and Ruminococcus. Bifidobacterium was enriched in pre-teen aged children and detected at lower levels among formula-fed children. Prevotella was more abundant in children who were delivered vaginally. While ethnicity explained a small amount of variation in the gut microbiota, it nonetheless was found to be significantly associated with microbiome composition. Conclusions Exogenous and demographic factors associate with, and possibly drive, the assembly of the gut microbiome of an understudied population of school-aged children in Thailand.
Collapse
Affiliation(s)
- Lucsame Gruneck
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Eleni Gentekaki
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | | | - Justin Denny
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States of America
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
- Department of Statistics, Oregon State University, Corvallis, OR, United States of America
| | - Lisa K. Marriott
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States of America
| | - Jackilen Shannon
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States of America
| | - Siam Popluechai
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| |
Collapse
|
6
|
Abstract
Research characterising the gut microbiota in different populations and diseases has mushroomed since the advent of next-generation sequencing techniques. However, there has been less emphasis on the impact of dietary fibres and other dietary components that influence gut microbial metabolic activities. Dietary fibres are the main energy source for gut bacteria. However, fibres differ in their physicochemical properties, their effects on the gut and their fermentation characteristics. The diversity of carbohydrates and associated molecules in fibre-rich foods can have a major influence on microbiota composition and production of bioactive molecules, for example SCFAs and phenolic acids. Several of these microbial metabolites may influence the functions of body systems including the gut, liver, adipose tissues and brain. Dietary fibre intake recommendations have recently been increased (to 30 g daily) in response to growing obesity and other health concerns. Increasing intakes of specific fibre and plant food sources may differentially influence the bacteria and their metabolism. However, in vitro studies show great individual variability in the response of the gut microbiota to different fibres and fibre combinations, making it difficult to predict which foods or food components will have the greatest impact on levels of bioactive molecules produced in the colon of individuals. Greater understanding of individual responses to manipulation of the diet, in relation to microbiome composition and production of metabolites with proven beneficial impact on body systems, would allow the personalised approach needed to best promote good health.
Collapse
Affiliation(s)
- Catriona Thomson
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|