1
|
Bertin S, Sybilska A, Luigi M, Tarchi F, Goggioli D, Taglienti A, Luison D, Faggioli F, Simoni S, Lewandowski M, Tiberini A. Transmission of tomato fruit blotch virus by the tomato russet mite: epidemiological implications for an emerging/re-emerging tomato disease. Sci Rep 2025; 15:12079. [PMID: 40204916 PMCID: PMC11982264 DOI: 10.1038/s41598-025-97142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
The tomato russet mite (TRM), Aculops lycopersici (Trombidiformes: Eriophyoidea), was recently suspected to be the vector of tomato fruit blotch virus (ToFBV; Blunervirus solani), a newly identified kitavirus infecting tomato cultivation worldwide. Tomato fruit blotch virus represents a serious threat to tomato crops, and its transmission needs to be clarified to achieve better disease control and monitoring. Two independent transmission trials were performed by inoculating 20 and 18 healthy tomato plants with viruliferous TRM specimens. A total of 13 plants (34.21%) resulted to be infected at different time points across an 18-week period, and showed foliar symptoms consisting of slight mosaic, chlorotic areas and discoloration that were solely attributed to ToFBV infection. This is the first evidence of the ability of TRM to acquire and transmit ToFBV from and to tomato plants. The highest rate of infection and the peak of virus titre occurred late, between ten and 14 weeks after inoculation. Afterwards, a general decrease in virus infection was recorded, in association with two opposite phenological responses in the host plants that worsened or improved their vegetative status. The involvement of the eriophyid vector and the limited adaptation of ToFBV to tomato are possible explanations for such slow and erratic infection dynamics.
Collapse
Affiliation(s)
- Sabrina Bertin
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156, Rome, Italy.
| | - Anna Sybilska
- Department of Plant Protection, Warsaw, University of Life Sciences, Nowoursynowska St. 159, 02-776, Warsaw, Poland
| | - Marta Luigi
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156, Rome, Italy
| | - Franca Tarchi
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via Lanciola 12/a, 50125, Florence, Italy
| | - Donatella Goggioli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via Lanciola 12/a, 50125, Florence, Italy
| | - Anna Taglienti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156, Rome, Italy
| | - Davide Luison
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156, Rome, Italy
| | - Francesco Faggioli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156, Rome, Italy
| | - Sauro Simoni
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via Lanciola 12/a, 50125, Florence, Italy
| | - Mariusz Lewandowski
- Department of Plant Protection, Warsaw, University of Life Sciences, Nowoursynowska St. 159, 02-776, Warsaw, Poland
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156, Rome, Italy
| |
Collapse
|
2
|
Nunes-Leite L, Liefting LW, Waite DW, Khan S, Thompson JR. High-Throughput Sequencing Methods for the Detection of Two Strawberry Viruses in Post-Entry Quarantine. Viruses 2024; 16:1550. [PMID: 39459884 PMCID: PMC11512301 DOI: 10.3390/v16101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
High-throughput sequencing (HTS) technologies may be a useful tool for testing imported plant germplasm for multiple pathogens present in a sample, offering strain-generic detection not offered by most PCR-based assays. Metatranscriptomics (RNAseq) and tiled amplicon PCR (TA-PCR) were tested as HTS-based techniques to detect viruses present in low titres. Strawberry mottle virus (SMoV), an RNA virus, and strawberry vein banding virus (SVBV), a DNA virus, were selected for comparison of RNAseq and TA-PCR with quantitative PCR assays. RNAseq of plant ribosomal RNA-depleted samples of low viral titre was used to obtain datasets from 3 M to 120 M paired-end (PE) reads. RNAseq demonstrated PCR-like sensitivity, able to detect as few as 10 viral copies/µL when 60 million (M) PE reads were generated. The custom TA-PCR primer panels designed for each virus were successfully used to recover most of the reference genomes for each virus. Single- and multiple-target TA-PCR allowed the detection of viruses in samples with around 10 viral copies/µL with a minimum continuous sequence length recovery of 500 bp. The limit of detection of the HTS-based protocols described here is comparable to that of quantitative PCR assays. This work lays the groundwork for an increased flexibility in HTS detection of plant viruses.
Collapse
Affiliation(s)
- Luciano Nunes-Leite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand; (D.W.W.); (S.K.)
| | - Lia W. Liefting
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand; (D.W.W.); (S.K.)
| | | | | | - Jeremy R. Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand; (D.W.W.); (S.K.)
| |
Collapse
|
3
|
Luigi M, Tiberini A, Taglienti A, Bertin S, Dragone I, Sybilska A, Tarchi F, Goggioli D, Lewandowski M, Simoni S, Faggioli F. Molecular Methods for the Simultaneous Detection of Tomato Fruit Blotch Virus and Identification of Tomato Russet Mite, a New Potential Virus-Vector System Threatening Solanaceous Crops Worldwide. Viruses 2024; 16:806. [PMID: 38793687 PMCID: PMC11126101 DOI: 10.3390/v16050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Tomato fruit blotch virus (ToFBV) (Blunervirus solani, family Kitaviridae) was firstly identified in Italy in 2018 in tomato plants that showed the uneven, blotchy ripening and dimpling of fruits. Subsequent High-Throughput Sequencing (HTS) analysis allowed ToFBV to be identified in samples collected in Australia, Brazil, and several European countries, and its presence in tomato crops was dated back to 2012. In 2023, the virus was found to be associated with two outbreaks in Italy and Belgium, and it was included in the EPPO Alert list as a potential new threat for tomato fruit production. Many epidemiologic features of ToFBV need to be still clarified, including transmission. Aculops lycopersici Massee (Acariformes: Eriophyoidea), the tomato russet mite (TRM), is a likely candidate vector, since high population densities were found in most of the ToFBV-infected tomato cultivations worldwide. Real-time RT-PCR tests for ToFBV detection and TRM identification were developed, also as a duplex assay. The optimized tests were then transferred to an RT-ddPCR assay and validated according to the EPPO Standard PM 7/98 (5). Such sensitive, reliable, and validated tests provide an important diagnostic tool in view of the probable threat posed by this virus-vector system to solanaceous crops worldwide and can contribute to epidemiological studies by simplifying the efficiency of research. To our knowledge, these are the first molecular methods developed for the simultaneous detection and identification of ToFBV and TRM.
Collapse
Affiliation(s)
- Marta Luigi
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156 Rome, Italy
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156 Rome, Italy
| | - Anna Taglienti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156 Rome, Italy
| | - Sabrina Bertin
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156 Rome, Italy
| | - Immacolata Dragone
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156 Rome, Italy
| | - Anna Sybilska
- Department of Plant Protection, Warsaw University of Life Sciences, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Franca Tarchi
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via Lanciola 12/a, 50125 Firenze, Italy
| | - Donatella Goggioli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via Lanciola 12/a, 50125 Firenze, Italy
| | - Mariusz Lewandowski
- Department of Plant Protection, Warsaw University of Life Sciences, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Sauro Simoni
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via Lanciola 12/a, 50125 Firenze, Italy
| | - Francesco Faggioli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification, Via C.G. Bertero 22, 00156 Rome, Italy
| |
Collapse
|
4
|
Donaire L, Aranda MA. Computational Pipeline for the Detection of Plant RNA Viruses Using High-Throughput Sequencing. Methods Mol Biol 2024; 2724:1-20. [PMID: 37987894 DOI: 10.1007/978-1-0716-3485-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In this chapter, we describe a computational pipeline for the in silico detection of plant viruses by high-throughput sequencing (HTS) from total RNA samples. The pipeline is designed for the analysis of short reads generated using an Illumina platform and free-available software tools. First, we provide advice for high-quality total RNA purification, library preparation, and sequencing. The bioinformatics pipeline begins with the raw reads obtained from the sequencing machine and performs some curation steps to obtain long contigs. Contigs are blasted against a local database of reference nucleotide viral sequences to identify the viruses in the samples. Then, the search is refined by applying specific filters. We also provide the code to re-map the short reads against the viruses found to get information on sequencing depth and read coverage for each virus. No previous bioinformatics background is required, but basic knowledge of the Unix command line and R language is recommended.
Collapse
Affiliation(s)
- Livia Donaire
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Murcia, Spain.
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain.
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| |
Collapse
|
5
|
Ramos-González PL, Dias Arena G, Tassi AD, Chabi-Jesus C, Watanabe Kitajima E, Freitas-Astúa J. Kitaviruses: A Window to Atypical Plant Viruses Causing Nonsystemic Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:97-118. [PMID: 37217202 DOI: 10.1146/annurev-phyto-021622-121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kitaviridae is a family of plant-infecting viruses that have multiple positive-sense, single-stranded RNA genomic segments. Kitaviruses are assigned into the genera Cilevirus, Higrevirus, and Blunervirus, mainly on the basis of the diversity of their genomic organization. Cell-to-cell movement of most kitaviruses is provided by the 30K family of proteins or the binary movement block, considered an alternative movement module among plant viruses. Kitaviruses stand out for producing conspicuously unusual locally restricted infections and showing deficient or nonsystemic movement likely resulting from incompatible or suboptimal interactions with their hosts. Transmission of kitaviruses is mediated by mites of many species of the genus Brevipalpus and at least one species of eriophyids. Kitavirus genomes encode numerous orphan open reading frames but RNA-dependent RNA polymerase and the transmembrane helix-containing protein, generically called SP24, typify a close phylogenetic link with arthropod viruses. Kitaviruses infect a large range of host plants and cause diseases of economic concern in crops such as citrus, tomato, passion fruit, tea, and blueberry.
Collapse
Affiliation(s)
| | - Gabriella Dias Arena
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Daniele Tassi
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Tropical Research and Education Center, University of Florida, Homestead, Florida, USA
| | - Camila Chabi-Jesus
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
6
|
Rivarez MPS, Pecman A, Bačnik K, Maksimović O, Vučurović A, Seljak G, Mehle N, Gutiérrez-Aguirre I, Ravnikar M, Kutnjak D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. MICROBIOME 2023; 11:60. [PMID: 36973750 PMCID: PMC10042675 DOI: 10.1186/s40168-023-01500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
- Present Address: College of Agriculture and Agri-Industries, Caraga State University, Ampayon, Butuan City, 8600 Philippines
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Olivera Maksimović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Gabrijel Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri Glavni trg 8, Vipava, 5271 Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| |
Collapse
|
7
|
Maachi A, Donaire L, Hernando Y, Aranda MA. Genetic Differentiation and Migration Fluxes of Viruses from Melon Crops and Crop Edge Weeds. J Virol 2022; 96:e0042122. [PMID: 35924924 PMCID: PMC9400485 DOI: 10.1128/jvi.00421-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/03/2022] [Indexed: 11/20/2022] Open
Abstract
Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.
Collapse
Affiliation(s)
- Ayoub Maachi
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Livia Donaire
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| |
Collapse
|
8
|
Maachi A, Hernando Y, Aranda MA, Donaire L. Complete genome sequence of malva-associated soymovirus 1: a novel virus infecting common mallow. Virus Genes 2022; 58:372-375. [PMID: 35471489 DOI: 10.1007/s11262-022-01900-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
In this work, a novel viral genomic sequence with a gene organization typical of members of the genus Soymovirus was identified using high-throughput sequencing data from common mallow. This species is a vigorous wild weed native to the Mediterranean region, commonly found in borders and edges of cultivated fields, making it a suitable reservoir for plant pests and pathogens. Indeed, plant viruses belonging to different genera have been previously found infecting common malva. This new viral genome consists of a single molecule of circular double-stranded DNA of 8391 base pairs and contains eight open reading frames encoding polymerase, movement, coat, translational transactivator protein typical of caulimoviruses, and four hypothetical proteins. Phylogenetic and pairwise distance analyses showed its close relationship with soybean chlorotic mottle virus. Interestingly, a small intergenic region was detected between ORFs Ib and II. Based on the demarcation criteria of the genus Soymovirus, the new virus, provisionally named malva-associated soymovirus 1, could be a member of a new species Soymovirus masolus. To our knowledge, this is the first report of a soymovirus infecting common mallow.
Collapse
Affiliation(s)
- Ayoub Maachi
- Abiopep S.L., Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, 30100, Espinardo, Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L., Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, 30100, Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, PO Box 164, 30100, Espinardo, Murcia, Spain
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, PO Box 164, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
9
|
Gauthier MEA, Lelwala RV, Elliott CE, Windell C, Fiorito S, Dinsdale A, Whattam M, Pattemore J, Barrero RA. Side-by-Side Comparison of Post-Entry Quarantine and High Throughput Sequencing Methods for Virus and Viroid Diagnosis. BIOLOGY 2022; 11:263. [PMID: 35205129 PMCID: PMC8868628 DOI: 10.3390/biology11020263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Rapid and safe access to new plant genetic stocks is crucial for primary plant industries to remain profitable, sustainable, and internationally competitive. Imported plant species may spend several years in Post Entry Quarantine (PEQ) facilities, undergoing pathogen testing which can impact the ability of plant industries to quickly adapt to new global market opportunities by accessing new varieties. Advances in high throughput sequencing (HTS) technologies provide new opportunities for a broad range of fields, including phytosanitary diagnostics. In this study, we compare the performance of two HTS methods (RNA-Seq and sRNA-Seq) with that of existing PEQ molecular assays in detecting and identifying viruses and viroids from various plant commodities. To analyze the data, we tested several bioinformatics tools which rely on different approaches, including direct-read, de novo, and reference-guided assembly. We implemented VirusReport, a new portable, scalable, and reproducible nextflow pipeline that analyses sRNA datasets to detect and identify viruses and viroids. We raise awareness of the need to evaluate cross-sample contamination when analyzing HTS data routinely and of using methods to mitigate index cross-talk. Overall, our results suggest that sRNA analyzed using VirReport provides opportunities to improve quarantine testing at PEQ by detecting all regulated exotic viruses from imported plants in a single assay.
Collapse
Affiliation(s)
- Marie-Emilie A. Gauthier
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
| | - Ruvini V. Lelwala
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Candace E. Elliott
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Craig Windell
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
| | - Sonia Fiorito
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (S.F.); (A.D.); (M.W.)
| | - Adrian Dinsdale
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (S.F.); (A.D.); (M.W.)
| | - Mark Whattam
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (S.F.); (A.D.); (M.W.)
| | - Julie Pattemore
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Roberto A. Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
| |
Collapse
|
10
|
Special Issue "Plant Viruses: From Ecology to Control". Microorganisms 2021; 9:microorganisms9061136. [PMID: 34070318 PMCID: PMC8228693 DOI: 10.3390/microorganisms9061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
|