1
|
Alexandrino AV, Barcelos MP, Federico LB, da Silva TG, Cavalca LB, de Moraes CHA, Ferreira H, Taft CA, Behlau F, de Paula Silva CHT, Novo-Mansur MTM. GDP-mannose pyrophosphorylase is an efficient target in Xanthomonas citri for citrus canker control. Microbiol Spectr 2024; 12:e0367323. [PMID: 38722158 PMCID: PMC11237706 DOI: 10.1128/spectrum.03673-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/20/2024] [Indexed: 06/06/2024] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity. Additionally, we found that XanB inhibitors protect the host against Xcc infection. Besides being deficient in motility, biofilm production, and ultraviolet resistance, the xanB deletion mutant was unable to cause disease, whereas xanB complementation restored wild-type phenotypes. XanB homology modeling allowed in silico virtual screening of inhibitors from databases, three of them being suitable in terms of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, which inhibited GMP (but not PMI) activity of the Xcc recombinant XanB protein in more than 50%. Inhibitors reduced citrus canker severity up to 95%, similarly to copper-based treatment. xanB is essential for Xcc pathogenicity, and XanB inhibitors can be used for the citrus canker control. IMPORTANCE Xcc causes citrus canker, a threat to citrus production, which has been managed with copper, being required a more sustainable alternative for the disease control. XanB was previously found on the surface of Xcc, interacting with the host and displaying PMI and GMP activities. We demonstrated by xanB deletion and complementation that GMP activity plays a critical role in Xcc pathogenicity, particularly in biofilm formation. XanB homology modeling was performed, and in silico virtual screening led to carbohydrate-derived compounds able to inhibit XanB activity and reduce disease symptoms by 95%. XanB emerges as a promising target for drug design for control of citrus canker and other economically important diseases caused by Xanthomonas sp.
Collapse
Affiliation(s)
- André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Bruno Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamiris Garcia da Silva
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | - Lúcia Bonci Cavalca
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Carlos Henrique Alves de Moraes
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | | | - Franklin Behlau
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | | | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular (PPGGEv), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Sanches FL, Weis CMSC, Gonçalves GCV, Andrade GS, Diniz LGT, Camargo AF, Kubeneck S, Klein GH, Romani LC, Longo VD, Bürck M, Tormen L, Braga ARC, Francisco CTDP, Treichel H, Bertan LC. Study and characterization of a product based on a vegetable extract of quinoa fermented with water kefir grains. World J Microbiol Biotechnol 2024; 40:118. [PMID: 38429465 DOI: 10.1007/s11274-024-03943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This work aimed to study and characterize a product based on vegetable extract of quinoa (WVEQ) fermented with water kefir grains. The effect of sucrose concentration (SC), inulin concentration (IC), and xanthan gum (XG) concentration were evaluated using a central composite design (CCD) 23. They were subsequently characterized regarding cellular growth of the grains, beverage yield, pH, soluble solids, carbon dioxide (CO2) production, lactic acid, and ethanol production. Therefore, for the final stage, two formulations (F1 and F8) of the CCD were chosen to be characterized in terms of proximate composition, microbiological composition of the kefir culture, analysis of organic compounds, sensory analysis, and enzymatic and microbiological characterization before and after simulation of in vitro gastrointestinal digestion. In the two chosen products, one can see that fermentation optimized the bioavailability of proteins due to the high proteolytic activity of the microorganisms in kefir and the increase in lipid content. In identifying microorganisms, there was a prevalence of Saccharomyces sp. yeasts. In the sensory analysis, the F8 formulation showed better results than the F1 formulation. In vitro, gastrointestinal digestion showed reduced lactic acid bacteria and yeast and increased acetic acid bacteria in the liquid phase for both formulations. In the enzymatic profile, there was a reduction in all enzymes analyzed for both formulations, except for amylase in F1, which went from 14.05 U/mL to 39.41 U/mL. Therefore, it is concluded that using WVEQ as a substrate for the product appears to be a viable alternative with nutritional and technological advantages for serving a specific market niche.
Collapse
Affiliation(s)
- Flavia Leticia Sanches
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | | | - Giovanna Camile Vaz Gonçalves
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Gessica Suiany Andrade
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Luan Gabriel Techi Diniz
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Gabriel Henrique Klein
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Larissa Capeletti Romani
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Vitoria Dassoler Longo
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Monize Bürck
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, 11015-020, Brazil
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, São Paulo, SP, 11015-020, Brazil
| | - Luciano Tormen
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, 11015-020, Brazil
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, São Paulo, SP, 11015-020, Brazil
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, São Paulo, 09972-270, Brazil
| | - Catia Tavares Dos Passos Francisco
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Helen Treichel
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil.
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil.
| | - Larissa Canhadas Bertan
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| |
Collapse
|
3
|
Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA. Analysis of CRISPR-Cas loci distribution in Xanthomonas citri and its possible control by the quorum sensing system. FEMS Microbiol Lett 2024; 371:fnae005. [PMID: 38244227 DOI: 10.1093/femsle/fnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.
Collapse
Affiliation(s)
| | - Laís Moreira Granato
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Túlio Morgan
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Julia Lopes Nalin
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Poliane Alfenas-Zerbini
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Alessandra Alves de Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| |
Collapse
|
4
|
Bonfim IM, Paixão DA, Andrade MDO, Junior JM, Persinoti GF, de Giuseppe PO, Murakami MT. Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr 2023; 11:e0228023. [PMID: 37855631 PMCID: PMC10714752 DOI: 10.1128/spectrum.02280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Xanthomonas bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood. Here, we reveal that structural and storage β-glucans from the plant cell function as spatial markers, providing distinct chemical stimuli that modulate the transition between higher and lower motility states in Xanthomonas citri, a key virulence trait for many bacterial pathogens.
Collapse
Affiliation(s)
- Isabela Mendes Bonfim
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Douglas Alvarez Paixão
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Joaquim Martins Junior
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Mário Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| |
Collapse
|
5
|
Bianco MI, Ponso MA, Garita-Cambronero J, Conforte VP, Galván TE, Dunger G, Morales GM, Vojnov AA, Romero AM, Cubero J, Yaryura PM. Genomic and phenotypic insight into Xanthomonas vesicatoria strains with different aggressiveness on tomato. Front Microbiol 2023; 14:1185368. [PMID: 37440880 PMCID: PMC10333488 DOI: 10.3389/fmicb.2023.1185368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Xanthomonas vesicatoria is one of the causal agents of bacterial spot, a disease that seriously affects the production of tomato (Solanum lycopersicum) and pepper (Capsicum annum) worldwide. In Argentina, bacterial spot is found in all tomato producing areas, with X. vesicatoria being one of the main species detected in the fields. Previously, we isolated three X. vesicatoria strains BNM 208, BNM 214, and BNM 216 from tomato plants with bacterial spot, and found they differed in their ability to form biofilm and in their degree of aggressiveness. Here, the likely causes of those differences were explored through genotypic and phenotypic studies. The genomes of the three strains were sequenced and assembled, and then compared with each other and also with 12 other publicly available X. vesicatoria genomes. Phenotypic characteristics (mainly linked to biofilm formation and virulence) were studied in vitro. Our results show that the differences observed earlier between BNM 208, BNM 214, and BNM 216 may be related to the structural characteristics of the xanthan gum produced by each strain, their repertoire of type III effectors (T3Es), the presence of certain genes associated with c-di-GMP metabolism and type IV pili (T4P). These findings on the pathogenicity mechanisms of X. vesicatoria could be useful for developing bacterial spot control strategies aimed at interfering with the infection processes.
Collapse
Affiliation(s)
- María Isabel Bianco
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - María Agustina Ponso
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentario y Biotecnológica (IMITAB, UNVM-CONICET), Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | | | - Valeria Paola Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - Tadeo E. Galván
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán Dunger
- Facultad de Ciencias Agrarias, Instituto de Ciencias Agropecuarias del Litoral, CONICET, Universidad Nacional del Litoral, Esperanza, Argentina
| | - Gustavo M. Morales
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Universidad Nacional de Rio Cuarto – CONICET, Rio Cuarto, Argentina
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - Ana María Romero
- Cátedra de Fitopatología, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime Cubero
- Laboratorio de Bacteriología, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria/Consejo Superior de Investigaciones Científicas (INIA/CSIC), Madrid, Spain
| | - Pablo Marcelo Yaryura
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentario y Biotecnológica (IMITAB, UNVM-CONICET), Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| |
Collapse
|
6
|
Costa J, Pothier JF, Boch J, Stefani E, Koebnik R. Integrating Science on Xanthomonas and Xylella for Integrated Plant Disease Management. Microorganisms 2022; 11:microorganisms11010006. [PMID: 36677298 PMCID: PMC9861534 DOI: 10.3390/microorganisms11010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Present, emerging or re-emerging plant diseases due to infection by bacteria of the Lysobacteraceae (syn: Xanthomonadaceae) family are continually challenging food security and cause significant losses to the economies of European countries each year [...].
Collapse
Affiliation(s)
- Joana Costa
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, 3000-456 Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Emilio Stefani
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34394 Montpellier, France
- Correspondence: ; Tel.: +33-467-416228
| |
Collapse
|
7
|
Balíková K, Farkas B, Matúš P, Urík M. Prospects of Biogenic Xanthan and Gellan in Removal of Heavy Metals from Contaminated Waters. Polymers (Basel) 2022; 14:polym14235326. [PMID: 36501719 PMCID: PMC9737242 DOI: 10.3390/polym14235326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Biosorption is considered an effective technique for the treatment of heavy-metal-bearing wastewaters. In recent years, various biogenic products, including native and functionalized biopolymers, have been successfully employed in technologies aiming for the environmentally sustainable immobilization and removal of heavy metals at contaminated sites, including two commercially available heteropolysaccharides-xanthan and gellan. As biodegradable and non-toxic fermentation products, xanthan and gellan have been successfully tested in various remediation techniques. Here, to highlight their prospects as green adsorbents for water decontamination, we have reviewed their biosynthesis machinery and chemical properties that are linked to their sorptive interactions, as well as their actual performance in the remediation of heavy metal contaminated waters. Their sorptive performance in native and modified forms is promising; thus, both xanthan and gellan are emerging as new green-based materials for the cost-effective and efficient remediation of heavy metal-contaminated waters.
Collapse
|
8
|
Cardoso JLS, Souza AA, Vieira MLC. Molecular basis for host responses to Xanthomonas infection. PLANTA 2022; 256:84. [PMID: 36114308 DOI: 10.1007/s00425-022-03994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the most relevant and recent updated information available on the defense responses of selected hosts against Xanthomonas spp. Xanthomonas is one of the most important genera of Gram-negative phytopathogenic bacteria, severely affecting the productivity of economically important crops worldwide, colonizing either the vascular system or the mesophyll tissue of the host. Due to its rapid propagation, Xanthomonas poses an enormous challenge to farmers, because it is usually controlled using huge quantities of copper-based chemicals, adversely impacting the environment. Thus, developing new ways of preventing colonization by these bacteria has become essential. Advances in genomic and transcriptomic technologies have significantly elucidated at molecular level interactions between various crops and Xanthomonas species. Understanding how these hosts respond to the infection is crucial if we are to exploit potential approaches for improving crop breeding and cutting productivity losses. This review focuses on our current knowledge of the defense response mechanisms in agricultural crops after Xanthomonas infection. We describe the molecular basis of host-bacterium interactions over a broad spectrum with the aim of improving our fundamental understanding of which genes are involved and how they work in this interaction, providing information that can help to speed up plant breeding programs, namely using gene editing approaches.
Collapse
Affiliation(s)
- Jéssica L S Cardoso
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandra A Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeirópolis, SP, 13490-000, Brazil
| | - Maria Lucia C Vieira
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|