1
|
Sanjrani MA, Gang X, Mirza SNA. A review on textile solid waste management: Disposal and recycling. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025; 43:522-539. [PMID: 39044443 DOI: 10.1177/0734242x241257093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Due to global population growth and living standards improvements, textile production and consumption are increased. Textile solid waste has become challenging issue for waste management authority. It is reported that textile materials are discarded daily, representing approximately 1.5% of the generated waste around the world. Over the past few decades, special attention has been given to the used clothes in all regions globally, which can reduce energy costs by 80% and also represent a source of raw materials economically profitable and environmentally responsible. This review article attempted to address different topics including: source of solid textile waste, environmental impact of textile waste as a result of massive consumption of clothing, textile waste management processes such as recycling, reuse of textile waste, landfill and incineration and energy recovery from textile waste. Narrative review with collection of recent quantitative information was carried to reflect the status of textile solid waste. In this article, the possibilities of bio-ethanol production from textile waste as valuable cellulosic raw material are investigated and presented. Results show that developing countries lack of systematic waste management. On another side of the globe, some countries are trying to recover energy these days by incineration. The heat and power that recovered from this process can be used instead of other energy sources. Throughout the incineration process, flue gases (CO2, H2O, O2, N2) are generated so it should be properly designed to avoid pollution. During energy recovery, different pre-treatment methods and different enzymatic hydrolysis parameters are recommended to be implied for better results.
Collapse
Affiliation(s)
- Manzoor Ahmed Sanjrani
- Songjiang Campus, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- HANDS-Institute of Development Studies, Karachi, Pakistan
| | - Xue Gang
- Songjiang Campus, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | | |
Collapse
|
2
|
Díez López C, Van Herreweghen F, De Pessemier B, Minnebo Y, Taelman S, Judge K, Ransley K, Hammond C, Batson M, Stock M, Van Criekinge W, Van de Wiele T, Macmaster A, Callewaert C. Unravelling the hidden side of laundry: malodour, microbiome and pathogenome. BMC Biol 2025; 23:40. [PMID: 39924526 PMCID: PMC11809074 DOI: 10.1186/s12915-025-02147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Recent trends towards lower washing temperatures and a reduction in the use of bleaching agents in laundry undoubtedly benefit our environment. However, these conditions impair microbial removal on clothes, leading to malodour generation and negative impacts on consumer well-being. Clothing undergoes cycles of wearing, washing and drying, with variable exposure to microorganisms and volatilomes originating from the skin, washing machine, water and laundry products. Laundry malodour is therefore a complex problem that reflects its dynamic ecosystem. To date, comprehensive investigations that encompass the evaluation of both microbial community and malodorous volatile organic compounds throughout all stages of the wash-wear-dry cycle are scarce. Furthermore, the microbial and malodour profiles associated with extended humid-drying conditions are poorly defined. RESULTS Here we present olfaction-directed chemical and microbiological studies of synthetic T-shirts after wearing, washing and drying. Results show that although washing reduces the occurrence of known malodour volatile organic compounds, membrane-intact bacterial load on clothing is increased. Skin commensals are displaced by washing machine microbiomes, and for the first time, we show that this shift is accompanied by an altered pathogenomic profile, with many genes involved in biofilm build-up. We additionally highlight that humid-drying conditions are associated with characteristic malodours and favour the growth of specific Gram-negative bacteria. CONCLUSIONS These findings have important implications for the development of next-generation laundry products that enhance consumer well-being, while supporting environmentally friendly laundry practices.
Collapse
Affiliation(s)
- Celia Díez López
- Center for Microbial Ecology and Technology, Ghent University, 9000, Ghent, Belgium
| | | | - Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, 9000, Ghent, Belgium
| | - Yorick Minnebo
- Center for Microbial Ecology and Technology, Ghent University, 9000, Ghent, Belgium
| | - Steff Taelman
- Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
- BIOLIZARD, 9000, Ghent, Belgium
| | - Kara Judge
- Givaudan UK Ltd, Ashford, Kent, TN24 0LT, UK
| | | | | | | | - Michiel Stock
- Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, 9000, Ghent, Belgium
| | | | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Zhang Y, Li K, Ru Y, Ma Y. Biofilm Compositions and Bacterial Diversity on Kitchen Towels in Daily Use. Microorganisms 2025; 13:97. [PMID: 39858865 PMCID: PMC11767729 DOI: 10.3390/microorganisms13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Towels with complex woven structures are susceptible to biofilm formation during daily use. The composition of biofilms formed on towels used under real-life conditions has yet to be studied. Thus, we investigated the color changes, structural integrity, and biofilm development on towels used continuously for 10 weeks by 12 volunteers in specific kitchen environments. Apparent biofilms composed of bacteria and extracellular polymeric substances (EPSs) were found on all used towels. The bacteria concentrations ranged from 4 to 7 log CFU/g. Proteins were the most abundant EPS, followed by polysaccharides and eDNA. A high-throughput sequencing method was employed to investigate the bacterial diversity on the towels. The predominant bacterial genera differed from towel to towel. Kocuria, Rothia, Psychrobacter, Enhydrobacter, and Pseudomonas are genera of relatively high abundance that may originate from the human body and foods. In addition, correlations among environmental factors, major bacterial genera, physical properties, and biofilm formation of the towels were analyzed, which could provide a scientific reference for maintaining towel hygiene.
Collapse
Affiliation(s)
| | | | | | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (K.L.); (Y.R.)
| |
Collapse
|
4
|
Rekhman Z, Blinov A, Gvozdenko A, Golik A, Nagdalian A, Blinova A, Serov A, Pirogov M, Askerova A, Nazaretova E, Shariati MA, Al Zahrani AA, AL-Farga A, Al-maaqar SM. Synthesis and characterization of selenium nanoparticles stabilized with oxyethylated alkylphenol (neonol) for potential modification of fabric materials. PLoS One 2024; 19:e0314208. [PMID: 39591417 PMCID: PMC11593756 DOI: 10.1371/journal.pone.0314208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
This work demonstrates the first time synthesis of selenium nanoparticles (Se NPs) stabilized with neonol. The synthesis method was optimized using a multifactorial experiment with three input parameters. The most stable sample had a radius of 15 nm and a ζ-potential of -36.76 mV. It was found that the optimal parameters for the synthesis of Se NPs stabilized with neonol are the following concentration values: 0.12 mol/L selenic acid, 0.095 mol/L neonol and 0.95 mol/L ascorbic acid. Quantum chemical modeling of Se-neonol molecular complex formation showed that interaction of Se with neonol occurs through a hydroxyl group. Difference in the total energy of the neonol molecule and Se-neonol molecular complex is more than 2399 kcal/mol, which indicates that formation of chemical bond between Se and neonol is energetically advantageous. It was found that all samples exhibit stability over the entire pH range from 1.81 to 11.98, and the particle size is in the range of 25-30 nm. The analysis of the study of the influence of the ionic force showed that cations do not significantly affect the Se NPs radius, but anions have a significant effect, increasing the average hydrodynamic radius up to 2750 nm. For modification with Se NPs, silk, gauze, wool, cotton and cardboard samples were used. Elemental mapping of the samples showed an ambiguous distribution of Se NPs over the surface of fabric material. Assessment of potential antibacterial activity of modified fabric materials revealed inhibition zones of Micrococcus luteus growth from 12 to 16 mm for silk, gauze, wool and cotton. Notably, the most intense inhibition of Micrococcus luteus was observed in wool treated be Se NPs stabilized with neonol. Cardboard did not express Micrococcus luteus growth inhibition action because of weak interaction of cellulose filaments with Se NPs and neonol and possible microbial digestion of cellulose and xylan.
Collapse
Affiliation(s)
- Zafar Rekhman
- North Caucasus Federal University, Stavropol, Russia
| | - Andrey Blinov
- North Caucasus Federal University, Stavropol, Russia
| | | | - Alexey Golik
- North Caucasus Federal University, Stavropol, Russia
| | | | | | | | - Maxim Pirogov
- North Caucasus Federal University, Stavropol, Russia
| | | | | | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Almaty, Kazakhstan
| | - Afnan A. Al Zahrani
- Department of Biology, Faculty of Science & Literature – Baljurshi, Al-Baha University, Al Bahah, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudia Arabia
| | - Saleh M. Al-maaqar
- Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen
| |
Collapse
|
5
|
Darwesh OM, Marzoog A, Matter IA, Okla MK, El-Tayeb MA, Aufy M, Dawoud TM, Abdel-Maksoud MA. Natural dyes developed by microbial-nanosilver to produce antimicrobial and anticancer textiles. Microb Cell Fact 2024; 23:189. [PMID: 38956629 PMCID: PMC11218209 DOI: 10.1186/s12934-024-02457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Ahmed Marzoog
- Department of Soil and Water Sciences, College of Agriculture, University of Anbar, Ramadi, Iraq
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Turki M Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Vojnits K, Mohseni M, Parvinzadeh Gashti M, Nadaraja AV, Karimianghadim R, Crowther B, Field B, Golovin K, Pakpour S. Advancing Antimicrobial Textiles: A Comprehensive Study on Combating ESKAPE Pathogens and Ensuring User Safety. MATERIALS (BASEL, SWITZERLAND) 2024; 17:383. [PMID: 38255551 PMCID: PMC10817529 DOI: 10.3390/ma17020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue. Nevertheless, ensuring the effectiveness and safety of these textiles remains a persistent challenge. To achieve this, we conduct a comprehensive study that systematically compares the effectiveness and potential toxicity of five commonly used antimicrobial agents. To guide decision making, a MULTIMOORA method is employed to select and rank the optimal antimicrobial textile finishes. Through this approach, we determine that silver nitrate is the most suitable choice, while a methoxy-terminated quaternary ammonium compound is deemed less favorable in meeting the desired criteria. The findings of this study offer valuable insights and guidelines for the development of antimicrobial textiles that effectively address the requirements of effectiveness, safety, and durability. Implementing these research outcomes within the textile industry can significantly enhance protection against microbial infections, contribute to the improvement of public health, and mitigate the spread of infectious diseases.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Majid Mohseni
- Research and Development Laboratory, PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | | | - Anupama Vijaya Nadaraja
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Ramin Karimianghadim
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Ben Crowther
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Brad Field
- PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | - Kevin Golovin
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| |
Collapse
|
7
|
Liu M, Liu X, Liu H, Han M, Ji S. Nonleaching Antimicrobial Cotton Fabrics Finished with Hyperbranched Polylysine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47978-47988. [PMID: 37792694 DOI: 10.1021/acsami.3c10587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The choice of the antimicrobial agent and finishing process is very important for the activity, durability, and safety of antimicrobial fabrics. Here, a novel antimicrobial cotton fabric (HPL-CF) was constructed by covalently bonding an antimicrobial agent, hyperbranched polylysine (HPL), onto the surface of a cotton fabric (CF) pretreated with a silane coupling agent, 3-chloropropyltrimethoxysilane (CPTMS). The multiple amino groups contained in the periphery of HPL make it possible to react with the CF to form multiple bonds, which is beneficial to improve the durability and safety of HPL-CFs. The obtained HPL-CFs exhibited excellent antimicrobial activities against Escherichia coli (E. coli, Gram-negative bacteria), Staphylococcus aureus (S. aureus, Gram-positive bacteria), and Candida albicans (C. albicans, fungi) even when the CF was treated with HPL solution at the concentration of 0.5 wt %. HPL2.0-CFs maintained 98, >99, and >99% of antimicrobial ratios for E. coli, S. aureus, and C. albicans, respectively, after 50 equiv of domestic laundering cycles, surpassing the requirements of the AAA class. The halo method, cell compatibility, and skin irritation assays all prove the fine safety of HPL-CFs. This work demonstrates the great advantages of applying HPL in the antimicrobial finishing of fabrics.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiao Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hui Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Suellen Ferro de Oliveira C, Kekhasharú Tavaria F. The impact of bioactive textiles on human skin microbiota. Eur J Pharm Biopharm 2023:S0939-6411(23)00118-2. [PMID: 37182552 DOI: 10.1016/j.ejpb.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In order to support the elevated market demand for the development of textiles with specific benefits for a healthy and safe lifestyle, several bioactive textiles with defined properties, including antimicrobial, antioxidant, anti-inflammatory, anti-odor, and anti-repellent, anti-ultraviolet (UV) radiation, have been proposed. Antimicrobial textiles, particularly, have received special interest considering the search for smart, protective textiles that also impact health and well-being. Although the incorporation of antimicrobials into textile material has been well succeeded, the addition of such components in textile clothing can influence the balance of the skin microbiota of the wearer. While most antimicrobial textiles have demonstrated good biocompatibility and antimicrobial performance against bacteria, fungi, and viruses, some problems such as textile biodegradation, odor, and dissemination of unwanted microorganisms might arise. However, little is known about the impact of such antimicrobial textile-products on human skin microbiota. To address this issue, the present review, for the first time, gives an overview about the main effects of antimicrobial textiles, i.e., antibacterial, antifungal, and antiviral, on skin microbiota while driving future investigation to elucidate their putative clinical relevance and possible applications according to their impact on skin microbiota. This knowledge may open doors for the development of more microbiota friendly textiles or antimicrobial textile-products able to target specific populations of the skin microbiota aiming to alleviate skin disorders, malodor, and allergies by avoiding the growth and spread of pathogenic microorganisms.
Collapse
Affiliation(s)
- Cláudia Suellen Ferro de Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Freni Kekhasharú Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
9
|
Horn S, Mölsä KM, Sorvari J, Tuovila H, Heikkilä P. Environmental sustainability assessment of a polyester T-shirt - Comparison of circularity strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163821. [PMID: 37137359 DOI: 10.1016/j.scitotenv.2023.163821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The considerable environmental burden of textiles is currently globally recognized. This burden can be mitigated by applying circular economy (CE) strategies to the commonly linear, short garment life cycles that end with incineration or landfill disposal. Even though all CE strategies strive to promote environmental sustainability, they might not be equally beneficial. Environmental data on different textile products is insufficiently available, which leads to complications when assessing and deciding on different CE strategies to be implemented. This paper studies the environmental impacts of a polyester T-shirt's linear life cycle through life cycle assessment (LCA) and evaluates the benefits attainable by adopting different CE strategies, and their order of priority, while noting uncertainty arising from poor data quality or unavailability. The LCA is complemented by assessing health and environmental risks related to the different options. Most of the linear life cycle's LCA-based impacts arise from use-phase washing. Hence, it is possible to reduce the environmental impact notably (37 %) by reducing the washing frequency. Adopting a CE strategy in which the shirt is reused by a second consumer, to double the number of uses, enables an 18 % impact reduction. Repurposing recycled materials to produce the T-shirt and recycling the T-shirt material itself emerged as the least impactful CE strategies. From the risk perspective, reusing the garment is the most efficient way to reduce environmental and health risks while washing frequency has a very limited effect. Combining different CE strategies offers the greatest potential for reducing both environmental impacts as well as risks. Data gaps and assumptions related to the use phase cause the highest uncertainty in the LCA results. To gain the maximum environmental benefits of utilizing CE strategies on polyester garments, consumer actions, design solutions, and transparent data sharing are needed.
Collapse
Affiliation(s)
- Susanna Horn
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Kiia M Mölsä
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jaana Sorvari
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Hannamaija Tuovila
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| | - Pirjo Heikkilä
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| |
Collapse
|
10
|
The Molecular Effect of Wearing Silver-Threaded Clothing on the Human Skin. mSystems 2023; 8:e0092222. [PMID: 36722970 PMCID: PMC9948701 DOI: 10.1128/msystems.00922-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
With growing awareness that what we put in and on our bodies affects our health and wellbeing, little is still known about the impact of textiles on the human skin. Athletic wear often uses silver threading to improve hygiene, but little is known about its effect on the body's largest organ. In this study, we investigated the impact of such clothing on the skin's chemistry and microbiome. Samples were collected from different body sites of a dozen volunteers over the course of 12 weeks. The changes induced by the antibacterial clothing were specific for individuals, but more so defined by gender and body site. Unexpectedly, the microbial biomass on skin increased in the majority of the volunteers when wearing silver-threaded T-shirts. Although the most abundant taxa remained unaffected, silver caused an increase in diversity and richness of low-abundant bacteria and a decrease in chemical diversity. Both effects were mainly observed for women. The hallmark of the induced changes was an increase in the abundance of various monounsaturated fatty acids (MUFAs), especially in the upper back. Several microbe-metabolite associations were uncovered, including Cutibacterium, detected in the upper back area, which was correlated with the distribution of MUFAs, and Anaerococcus spp. found in the underarms, which were associated with a series of different bile acids. Overall, these findings point to a notable impact of the silver-threaded material on the skin microbiome and chemistry. We observed that relatively subtle changes in the microbiome result in pronounced shifts in molecular composition. IMPORTANCE The impact of silver-threaded material on human skin chemistry and microbiome is largely unknown. Although the most abundant taxa remained unaffected, silver caused an increase in diversity and richness of low-abundant bacteria and a decrease in chemical diversity. The major change was an increase in the abundance of various monounsaturated fatty acids that were also correlated with Cutibacterium. Additionally, Anaerococcus spp., found in the underarms, were associated with different bile acids in the armpit samples. Overall, the impact of the silver-threaded clothing was gender and body site specific.
Collapse
|
11
|
The Fashion Industry Needs Microbiology: Opportunities and Challenges. mSphere 2023; 8:e0068122. [PMID: 36744949 PMCID: PMC10117041 DOI: 10.1128/msphere.00681-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fashion industry is the second most polluting industry in the world, representing a 2 trillion dollars and growing valuation. Fashion design practices have been perpetuating an industrial-focused approach, which relies mostly in the economic improvement through fast cycles of product development. Additionally, the fashion industry has also been closed to either multidisciplinary or transdisciplinary initiatives outside the scope of the artistic disciplines. Therefore, innovative approaches are needed to solve fashion industrial challenges. One of the most promising fields to tackle current environmental and technological problems in the fashion industry is microbiology. Through the emergent field of synthetic biology, the number of tools and approaches available is increasing and they can already be seen in niche applications. Despite the current advances and urgent need for change, there is still a long way until a more sustainable fashion industry is achieved.
Collapse
|
12
|
Yan H, Ren Y, Zhou B, Ye F, Wu Z. Microbial profile of T-shirts after a fitness session of Chinese students. Heliyon 2022; 8:e12379. [PMID: 36582726 PMCID: PMC9793269 DOI: 10.1016/j.heliyon.2022.e12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Clothing textiles could protect our human skin against external factors, but the microbial population, including conditional pathogens, in clothing, would cause unpleasant odor, Skin inflammation, and textile deterioration. Several studies have reported that microbiomes on clothes are affected by skin microorganisms of individuals, the local environment and the types of textile fabrics, but little is known about how the textile microbial community is shaped in the Chinese population. In this study, 10 healthy young students were recruited to successfully wear the T-shirts made with 3 different fabrics (polyester, cotton, and blending fabrics of polyester and cotton) during physical exercise. Total deoxyribonucleic acid (DNA) was extracted from 30 T-shirts and 16s rRNA gene amplicon sequencing was applied to estimate the absolute abundances of bacteria in the samples. The main bacteria on wore T-shirts were Staphylococcus (21.66%) Enhydrobacter (13.81%), Pantoea (8.14%), Acinetobacter (7.81%), Pseudomonas (6.18%), Cutibacterium (4.99%). However, no difference of α and β diversity was observed among the three textile fabrics. Further analysis found that Pantoea and Pseudomonas, mainly from the environment, enriched on the polyester, but not on cotton, while Enhydrobacter, from human skin, has the growth advantage on cotton, and the blending fabric in between. Collectively, our study preliminary explored the clothes microbiome in Chinese young students, contributing to helping understand the role of clothing microorganisms on human health.
Collapse
Affiliation(s)
- Huizhen Yan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxing Ren
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bihong Zhou
- Guangzhou Blue Moon Industrial Co., Ltd., Guangzhou, Guangdong, China
| | - Fang Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,Corresponding author.
| | - Zhigang Wu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,Corresponding author.
| |
Collapse
|
13
|
Intrafibrillar Dispersion of Cuprous Oxide (Cu 2O) Nanoflowers within Cotton Cellulose Fabrics for Permanent Antibacterial, Antifungal and Antiviral Activity. Molecules 2022; 27:molecules27227706. [PMID: 36431816 PMCID: PMC9692297 DOI: 10.3390/molecules27227706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
With increasingly frequent highly infectious global pandemics, the textile industry has responded by developing commercial fabric products by incorporating antibacterial metal oxide nanoparticles, particularly copper oxide in cleaning products and personal care items including antimicrobial wipes, hospital gowns and masks. Current methods use a surface adsorption method to functionalize nanomaterials to fibers. However, this results in poor durability and decreased antimicrobial activity after consecutive launderings. In this study, cuprous oxide nanoparticles with nanoflower morphology (Cu2O nanoflowers) are synthesized in situ within the cotton fiber under mild conditions and without added chemical reducing agents from a copper (II) precursor with an average maximal Feret diameter of 72.0 ± 51.8 nm and concentration of 17,489 ± 15 mg/kg. Analysis of the Cu2O NF-infused cotton fiber cross-section by transmission electron microscopy (TEM) confirmed the internal formation, and X-ray photoelectron spectroscopy (XPS) confirmed the copper (I) reduced oxidation state. An exponential correlation (R2 = 0.9979) between the UV-vis surface plasmon resonance (SPR) intensity at 320 nm of the Cu2O NFs and the concentration of copper in cotton was determined. The laundering durability of the Cu2O NF-cotton fabric was investigated, and the superior nanoparticle-leach resistance was observed, with the fabrics releasing only 19% of copper after 50 home laundering cycles. The internally immobilized Cu2O NFs within the cotton fiber exhibited continuing antibacterial activity (≥99.995%) against K. pneumoniae, E. coli and S. aureus), complete antifungal activity (100%) against A. niger and antiviral activity (≥90%) against Human coronavirus, strain 229E, even after 50 laundering cycles.
Collapse
|
14
|
Refaee AA, Mostafa TB, El-Naggar ME, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Ismail LA. Cellulosic fabrics modified with polyphosphonium chitosan hydrazone-TiO 2-Ag nanobiocomposites for multifunctional applications. Int J Biol Macromol 2022; 220:482-492. [PMID: 35987357 DOI: 10.1016/j.ijbiomac.2022.08.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Bionanocomposites (BNC1,2) of binary (PPCH-Ag) and ternary (PPCH-TiO2-Ag) (PPCH = polyphosphonium chitosan-hydrazone) have been synthesized and immobilized on cellulosic fabrics (CFs) using an environmentally friendly single-step in situ methodology. The results of FTIR, TGA, EDX, SEM, and TEM investigations showed that PPCH and its BNCs were successfully formed on the surface layer of fabrics. Moreover, the BNC2-coated cloth exhibited a superhydrophobic behavior as revealed from the values of water contact angle (WCA) 152.1° and slide angle (SA) 8.7°. The cytotoxicity experiments on epithelial cells confirmed the safety of treated fabrics for human cells. The antimicrobial capabilities of the BNCs-treated textiles were greatly enhanced, with a small preference for BNC1-coated fabric, as compared to the native or other treated fabrics. In contrast, the BNC2-coated fabric demonstrated the highest anti-UV protection capabilities as indicated by its great capacity to reduce the UV transmission (UV-A, 2.1 %; UV-B, 1.8 %) as well as its UPF value (49.2). The durability tests revealed the high resistance of BNC2-CF against harsh washing conditions and their acquired functions sustainability up to 20 washing cycles.
Collapse
Affiliation(s)
- Ayaat A Refaee
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Tahia B Mostafa
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Mehrez E El-Naggar
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research Division, National Research Center, Cairo, Egypt
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Giza 12311, Egypt
| | - Reda F M Elshaarawy
- Chemistry Department, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Lamia A Ismail
- Chemistry Department, Faculty of Science, Port Said University, 42526 Port Said, Egypt
| |
Collapse
|
15
|
Topical Probiotics: More Than a Skin Deep. Pharmaceutics 2022; 14:pharmaceutics14030557. [PMID: 35335933 PMCID: PMC8955881 DOI: 10.3390/pharmaceutics14030557] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Skin, an exterior interface of the human body is home to commensal microbiota and also acts a physical barrier that protects from invasion of foreign pathogenic microorganisms. In recent years, interest has significantly expanded beyond the gut microbiome to include the skin microbiome and its influence in managing several skin disorders. Probiotics play a major role in maintaining human health and disease prevention. Topical probiotics have demonstrated beneficial effects for the treatment of certain inflammatory skin diseases such as acne, rosacea, psoriasis etc., and also found to have a promising role in wound healing. In this review, we discuss recent insights into applications of topical probiotics and their influence on health and diseases of the skin. Patents, commercially available topical probiotics, and novel probiotic impregnated fabrics have been emphasized. A thorough understanding of the relationship between probiotics and the skin microbiome is important for designing novel therapeutic approaches in using topical probiotics.
Collapse
|
16
|
Refaee AA, El-Naggar ME, Mostafa TB, Elshaarawy RF, Nasr AM. Nano-bio finishing of cotton fabric with quaternized chitosan Schiff base-TiO2-ZnO nanocomposites for antimicrobial and UV protection applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111040] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|