1
|
Dong L, Li Y, Zhang Y, Su S. Cationic antimicrobial peptide CC34 potential anticancer and apoptotic induction on cancer cells. Amino Acids 2025; 57:28. [PMID: 40413361 PMCID: PMC12103485 DOI: 10.1007/s00726-025-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/04/2025] [Indexed: 05/27/2025]
Abstract
To evaluate the potential of antimicrobial peptide CC34 for use as therapeutic agents for gastric cancer SGC-7901 and hepatocellular carcinoma HepG-2. In this study, the antibacterial activity and antibacterial mechanism were tested by the minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, bacterial biofilm and NaCl permeability assays. Then, we assessed the hemolytic activity and cytotoxicity of CC34 for red blood cells and cancer cells, respectively. Apoptosis assay, cell cycle analysis, determination of intracellular ROS, western blot analysis caspase activity assay and ATP assay were further performed to investigate the mechanism of CC34 affected cancer cells. The novel peptide could inhibit Gram-negative and Gram-positive bacteria, with low hemolytic activity against mouse and chicken erythrocytes. Moreover, CC34 exhibited higher inhibitory activity against biofilm formation. In addition, our data showed that CC34 significantly suppressed cell proliferation, in a dose dependent manner. CC34 induced apoptosis, induced reactive oxygen species (ROS) generation, inhibited B-cell lymphoma-2 (Bcl-2) expression, increase B-cell lymphoma protein 2 associated X protein (Bax) expression, release of cytochrome c (Cyt C), promoted caspase-3 and - 9 activities and reduced cellular ATP levels in cancer cells. Our results indicate that CC34 with antimicrobial activity have a highly potent ability to induced apoptosis via mitochondrial-mediated apoptotic pathway in cancer cells.
Collapse
Affiliation(s)
- Liqiang Dong
- School of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152061, China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163316, China.
| | - Yunhe Li
- School of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152061, China
| | - Yaguang Zhang
- Heilongjiang Animal Husbandry Service, Harbin, 150000, China
| | - Shi Su
- School of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152061, China
| |
Collapse
|
2
|
Cândido ES, Gasparetto LS, Luchi LV, Pimentel JP, Cardoso MH, Macedo ML, de la Fuente-Nunez C, Franco OL. Small and Versatile Cyclotides as Anti-infective Agents. ACS Infect Dis 2025; 11:386-397. [PMID: 39842000 PMCID: PMC11833872 DOI: 10.1021/acsinfecdis.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability. These molecules can directly target membranes of infectious agents by binding to phosphatidylethanolamine in lipid membranes, leading to membrane permeabilization. Additionally, they function as carriers and cell-penetrating molecules, demonstrating antiviral, antibacterial, antifungal, and nematicidal properties. The structure of cyclotides is also amenable to chemical synthesis, facilitating drug design through residue substitutions or grafting of bioactive epitopes within the cyclotide scaffold to enhance peptide stability. In this review, we explore the multifunctionality of these biomolecules as anti-infective agents, emphasizing their potential as a novel class of antimicrobial drugs.
Collapse
Affiliation(s)
- Elizabete
de Souza Cândido
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Liryel Silva Gasparetto
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Livia Veiga Luchi
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - João Pedro
Farias Pimentel
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Marlon Henrique Cardoso
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Maria Lígia
Rodrigues Macedo
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Cesar de la Fuente-Nunez
- Machine
Biology
Group, Departments of Psychiatry and Microbiology, Institute for Biomedical
Informatics, Institute for Translational Medicine and Therapeutics,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, United
States
- Penn Institute
for Computational Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Octávio Luiz Franco
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| |
Collapse
|
3
|
Nazeer N, Kooner N, Ghimire A, Rainey JK, Lubell WD, Meneksedag-Erol D, Ahmed M. Secondary Structure Stabilization of Macrocyclic Antimicrobial Peptides via Cross-Link Swapping. J Med Chem 2024; 67:8693-8707. [PMID: 38771638 DOI: 10.1021/acs.jmedchem.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Lactam cross-links have been employed to stabilize the helical secondary structure and enhance the activity and physiological stability of antimicrobial peptides; however, stabilization of β-sheets via lactamization has not been observed. In the present study, lactams between the side chains of C- and N-terminal residues have been used to stabilize the β-sheet conformation in a short ten-residue analogue of chicken angiogenin-4. Designed using a combination of molecular dynamics simulations and Markov state models, the lactam cross-linked peptides are shown to adopt stabilized β-sheet conformations consistent with simulated structures. Replacement of the peptide side-chain Cys-Cys disulfide by a lactam cross-link enhanced the broad-spectrum antibacterial activity compared to the parent peptide and exhibited greater propensity to induce proinflammatory activity in macrophages. The combination of molecular simulations and conformational and biological analyses of the synthetic peptides provides a useful paradigm for the rational design of therapeutically active peptides with constrained β-sheet structures.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Navjote Kooner
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Deniz Meneksedag-Erol
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
- Department of Chemical and Materials Engineering, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| |
Collapse
|
4
|
Mourenza A, Ganesan R, Camarero JA. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. RSC Chem Biol 2023; 4:722-735. [PMID: 37799576 PMCID: PMC10549238 DOI: 10.1039/d3cb00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 10/07/2023] Open
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs. Many of these novel peptide scaffolds have been shown to have a high tolerance to sequence variability in those residues not involved in disulfide bonds, able to cross biological membranes, and efficiently target complex biomolecular interactions. Hence, these unique properties make the use of these scaffolds ideal for many biotechnological applications, including the design of novel peptide antibiotics. This article provides an overview of the new developments in the use of several disulfide-rich cyclic polypeptides, including cyclotides, θ-defensins, and sunflower trypsin inhibitor peptides, among others, in the development of novel antimicrobial peptides against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alvaro Mourenza
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Los Angeles CA90033 USA
| |
Collapse
|
5
|
Hilpert K, Rumancev C, Gani J, Collis DWP, Lopez-Perez PM, Garamus VM, Mikut R, Rosenhahn A. Can BioSAXS detect ultrastructural changes of antifungal compounds in Candida albicans?-an exploratory study. Front Pharmacol 2023; 14:1141785. [PMID: 37533629 PMCID: PMC10393279 DOI: 10.3389/fphar.2023.1141785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
The opportunistic yeast Candida albicans is the most common cause of candidiasis. With only four classes of antifungal drugs on the market, resistance is becoming a problem in the treatment of fungal infections, especially in immunocompromised patients. The development of novel antifungal drugs with different modes of action is urgent. In 2016, we developed a groundbreaking new medium-throughput method to distinguish the effects of antibacterial agents. Using small-angle X-ray scattering for biological samples (BioSAXS), it is now possible to screen hundreds of new antibacterial compounds and select those with the highest probability for a novel mode of action. However, yeast (eukaryotic) cells are highly structured compared to bacteria. The fundamental question to answer was if the ultrastructural changes induced by the action of an antifungal drug can be detected even when most structures in the cell stay unchanged. In this exploratory work, BioSAXS was used to measure the ultrastructural changes of C. albicans that were directly or indirectly induced by antifungal compounds. For this, the well-characterized antifungal drug Flucytosine was used. BioSAXS measurements were performed on the synchrotron P12 BioSAXS beamline, EMBL (DESY, Hamburg) on treated and untreated yeast C. albicans. BioSAXS curves were analysed using principal component analysis (PCA). The PCA showed that Flucytosine-treated and untreated yeast were separated. Based on that success further measurements were performed on five antifungal peptides {1. Cecropin A-melittin hybrid [CA (1-7) M (2-9)], KWKLFKKIGAVLKVL; 2. Lasioglossin LL-III, VNWKKILGKIIKVVK; 3. Mastoparan M, INLKAIAALAKKLL; 4. Bmkn2, FIGAIARLLSKIFGKR; and 5. optP7, KRRVRWIIW}. The ultrastructural changes of C. albicans indicate that the peptides may have different modes of action compared to Flucytosine as well as to each other, except for the Cecropin A-melittin hybrid [CA (1-7) M (2-9)] and optP7, showing very similar effects on C. albicans. This very first study demonstrates that BioSAXS shows promise to be used for antifungal drug development. However, this first study has limitations and further experiments are necessary to establish this application.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Infection and Immunology, St. George’s, University of London (SGUL), London, United Kingdom
| | - Christoph Rumancev
- Laboratory Analytical Chemistry—Biointerfaces, Ruhr-University Bochum, Bochum, Germany
| | - Jurnorain Gani
- Institute of Infection and Immunology, St. George’s, University of London (SGUL), London, United Kingdom
| | | | | | | | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Rosenhahn
- Laboratory Analytical Chemistry—Biointerfaces, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Ho TNT, Turner A, Pham SH, Nguyen HT, Nguyen LTT, Nguyen LT, Dang TT. Cysteine-rich peptides: From bioactivity to bioinsecticide applications. Toxicon 2023; 230:107173. [PMID: 37211058 DOI: 10.1016/j.toxicon.2023.107173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Greater levels of insect resistance and constraints on the use of current pesticides have recently led to increased crop losses in agricultural production. Further, the health and environmental impacts of pesticides now restrict their application. Biologics based on peptides are gaining popularity as efficient crop protection agents with low environmental toxicity. Cysteine-rich peptides (whether originated from venoms or plant defense substances) are chemically stable and effective as insecticides in agricultural applications. Cysteine-rich peptides fulfill the stability and efficacy requirements for commercial uses and provide an environmentally benign alternative to small-molecule insecticides. In this article, cysteine-rich insecticidal peptide classes identified from plants and venoms will be highlighted, focusing on their structural stability, bioactivity and production.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - A Turner
- Molecular Biology Department, University of Texas, 100 E 24th St. Austin, USA
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
7
|
Ho TNT, Pham SH, Nguyen LTT, Nguyen HT, Nguyen LT, Dang TT. Insights into the synthesis strategies of plant-derived cyclotides. Amino Acids 2023:10.1007/s00726-023-03271-8. [PMID: 37142771 DOI: 10.1007/s00726-023-03271-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Cyclotides are plant peptides characterized with a head-to-tail cyclized backbone and three interlocking disulfide bonds, known as a cyclic cysteine knot. Despite the variations in cyclotides peptide sequences, this core structure is conserved, underlying their most useful feature: stability against thermal and chemical breakdown. Cyclotides are the only natural peptides known to date that are orally bioavailable and able to cross cell membranes. Cyclotides also display bioactivities that have been exploited and expanded to develop as potential therapeutic reagents for a wide range of conditions (e.g., HIV, inflammatory conditions, multiple sclerosis, etc.). As such, in vitro production of cyclotides is of the utmost importance since it could assist further research on this peptide class, specifically the structure-activity relationship and its mechanism of action. The information obtained could be utilized to assist drug development and optimization. Here, we discuss several strategies for the synthesis of cyclotides using both chemical and biological routes.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
8
|
Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, Roy T, Lawal AA, Ogah NB, Olorundare OE, Chamcheu JC. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. PLANTS (BASEL, SWITZERLAND) 2022; 11:3271. [PMID: 36501311 PMCID: PMC9737898 DOI: 10.3390/plants11233271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.
Collapse
Affiliation(s)
- Francis Alfred Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Abdulmalik Babatunde Yusuf
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Oluwakorede Joshua Adedeji
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Kelvin Oluwafemi Akhigbe
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Azeemat Adeola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Ngozi Blessing Ogah
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
| | | | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| |
Collapse
|
9
|
Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2022; 14:1679. [PMID: 36015305 PMCID: PMC9412702 DOI: 10.3390/pharmaceutics14081679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Akilah Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Kenneth Markowitz
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Steven R. Singer
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
10
|
de Souza CM, da Silva ÁP, Júnior NGO, Martínez OF, Franco OL. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022; 43:335-348. [DOI: 10.1016/j.tips.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
|
11
|
Hilpert K, Gani J, Rumancev C, Simpson N, Lopez-Perez PM, Garamus VM, von Gundlach AR, Markov P, Scocchi M, Mikut R, Rosenhahn A. Rational Designed Hybrid Peptides Show up to a 6-Fold Increase in Antimicrobial Activity and Demonstrate Different Ultrastructural Changes as the Parental Peptides Measured by BioSAXS. Front Pharmacol 2021; 12:769739. [PMID: 34966279 PMCID: PMC8711299 DOI: 10.3389/fphar.2021.769739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH2 and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH2) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH2 and optP7: KRRVRWIIW-CONH2). Proline-rich antimicrobial peptides (PrAMPs) are known to inhibit the bacterial ribosome, shown also for Bac5-v291, whereas it is hypothesized a “dirty drug” model for the arginine-isoleucine-rich peptides. That hypothesis was underpinned by transmission electron microscopy and biological small-angle X-ray scattering (BioSAXS). The strength of BioSAXS is the power to detect ultrastructural changes in millions of cells in a short time (seconds) in a high-throughput manner. This information can be used to classify antimicrobial compounds into groups according to the ultrastructural changes they inflict on bacteria and how the bacteria react towards that assault. Based on previous studies, this correlates very well with different modes of action. Due to the novelty of this approach direct identification of the target of the antimicrobial compound is not yet fully established, more research is needed. More research is needed to address this limitation. The hybrid peptides showed a stronger antimicrobial activity compared to the proline-rich peptides, except when compared to Bac5-v291 against E. coli. The increase in activity compared to the arginine-isoleucine-rich peptides was up to 6-fold, however, it was not a general increase but was dependent on the combination of peptides and bacteria. BioSAXS experiments revealed that proline-rich peptides and arginine-isoleucine-rich peptides induce very different ultrastructural changes in E. coli, whereas a hybrid peptide (hyP7B5GK) shows changes, different to both parental peptides and the untreated control. These different ultrastructural changes indicated that the mode of action of the parental peptides might be different from each other as well as from the hybrid peptide hyP7B5GK. All peptides showed very low haemolytic activity, some of them showed a 100-fold or larger therapeutic window, demonstrating the potential for further drug development.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Infection and Immunology, St. George's, University of London, London, United Kingdom
| | - Jurnorain Gani
- Institute of Infection and Immunology, St. George's, University of London, London, United Kingdom
| | - Christoph Rumancev
- Laboratory Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nathan Simpson
- Institute of Infection and Immunology, St. George's, University of London, London, United Kingdom
| | | | | | | | - Petar Markov
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Rosenhahn
- Laboratory Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int J Mol Sci 2021; 22:ijms222011172. [PMID: 34681833 PMCID: PMC8538224 DOI: 10.3390/ijms222011172] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.
Collapse
|