1
|
Dumbai Joe A, Liu R, Luo X, Syed R, Aslam F, Luo Z, Zheng Z. Comprehensive analysis of the mechanisms conferring resistance to phenamacril in the Fusarium species. Front Cell Infect Microbiol 2025; 15:1536532. [PMID: 40007612 PMCID: PMC11850537 DOI: 10.3389/fcimb.2025.1536532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The filamentous fungal genus Fusarium contains many species that cause catastrophic diseases in fruits, cereal, and vegetables. These diseases cause substantial losses in yield and contaminate affected crops with toxins. This causes huge losses in the agricultural sector and threatens human and animal health. The most efficient approach to control the Fusarium spp. is fungicide application. Phenamacril is a site-specific fungicide that exerts its antifungal effect on sensitive Fusarium spp. It is a new fungicide developed that targets Fusarium graminearum by inhibiting myosin-5, an important protein in fungal growth and disease development. Because of its remarkable specificity, the new fungicide phenamacril is regarded as environmentally benign. However, many research findings have reported the emergence of the resistance of Fusarium spp. to phenamacril in both the field and laboratory. This article comprehensively analyzes the mechanisms underlying Fusarium spp. resistance to phenamacril. We examine the molecular, genetic, and environmental factors contributing to this resistance. We emphasize the importance of continued research and integrating different approaches to monitoring and managing drug-resistant Fusarium spp. populations. Integrating current inventions to inform strategies for sustainable disease control practices, and increase plant health, and yield will contribute to ongoing global efforts to achieve food and nutritional sustainability for the world's rapidly growing population while ensuring the effectiveness of the fungicidal product.
Collapse
Affiliation(s)
- Alexander Dumbai Joe
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Runze Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Xiao Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Ruqiya Syed
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Farhan Aslam
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Zhenying Luo
- Ganzhou Vegetable and Flower Research Institute, Ganzhou, China
| | - Zhitian Zheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
2
|
Teo JWP, Cheng JWS, Chew KL, Lin RTP. Whole genome characterization of Trichophyton indotineae isolated in Singapore. Med Mycol 2024; 62:myae012. [PMID: 38366631 DOI: 10.1093/mmy/myae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Complete genome sequences from two Trichophyton indotineae isolates were obtained from a 23-year-old male presenting with tinea cruris after an overseas recreational water exposure and from a 53-year-old female patient with unknown travel history. Analysis of the squalene epoxidase gene and the cyp51 gene family showed an absence of mutations, correlating with phenotypic drug susceptibility. The Single Nucleotide Polymorphisms (SNPs) distance between both isolates was 92. Within the T. indotineae cluster, SNPs ranged from 7 to 182, suggesting a high genetic relatedness with other South Asian isolates. This study suggests that the prevalence of T. indotineae is under-reported and more widespread than previously thought.
Collapse
Affiliation(s)
- Jeanette W P Teo
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Janet W S Cheng
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Raymond T P Lin
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Zhang C, Dai Y, Liu J, Su Y, Zhang Q. Chitosan Enhances Low-Dosage Difenoconazole to Efficiently Control Leaf Spot Disease in Pseudostellaria heterophylla (Miq.) Pax. Molecules 2023; 28:6170. [PMID: 37630422 PMCID: PMC10459367 DOI: 10.3390/molecules28166170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudostellaria heterophylla (Miq.) Pax is a popular clinical herb and nutritious health food. However, leaf spot disease caused by fungal pathogens frequently occurs and seriously influences the growth, quality, and yield of P. heterophylla. In this work, the field control roles of difenoconazole, chitosan, and their combination in the leaf spot disease in P. heterophylla and their effects on the disease resistance, photosynthetic capacity, medicinal quality, and root yield of P. heterophylla are investigated. The results manifest that 37% difenoconazole water-dispersible granule (WDG) with 5000-time + chitosan 500-time dilution liquid had a superior control capacity on leaf spot disease with the control effects of 91.17%~88.19% at 15~30 days after the last spraying, which significantly (p < 0.05) exceeded that of 37% difenoconazole WDG 3000-time dilution liquid and was significantly (p < 0.01) higher than that of 37% difenoconazole WDG 5000-time dilution liquid, chitosan 500-time dilution liquid, or chitosan 1000-time dilution liquid. Simultaneously, this combination could more effectively enhance the disease resistance, photosynthetic capacity, medicinal quality, and tuberous root yield of P. heterophylla compared to when these elements were applied alone, as well as effectively reduce difenoconazole application. This study emphasizes that chitosan combined with a low dosage of difenoconazole can be proposed as a green, efficient, and alternative formula for controlling leaf spot disease in P. heterophylla and enhancing its resistance, photosynthesis, quality, and yield.
Collapse
Affiliation(s)
- Cheng Zhang
- Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (C.Z.); (J.L.)
| | - Yi Dai
- Engineering Technology Research Center for Protection and Detection of Germplasm Resources of Karst-Adaptable Crops, Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China;
| | - Jiaqi Liu
- Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (C.Z.); (J.L.)
| | - Yue Su
- Engineering Technology Research Center for Protection and Detection of Germplasm Resources of Karst-Adaptable Crops, Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China;
| | - Qinghai Zhang
- Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (C.Z.); (J.L.)
| |
Collapse
|
4
|
Achilonu CC, Gryzenhout M, Ghosh S, Marais GJ. In Vitro Evaluation of Azoxystrobin, Boscalid, Fentin-Hydroxide, Propiconazole, Pyraclostrobin Fungicides against Alternaria alternata Pathogen Isolated from Carya illinoinensis in South Africa. Microorganisms 2023; 11:1691. [PMID: 37512864 PMCID: PMC10384428 DOI: 10.3390/microorganisms11071691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Black spot disease or Alternaria black spot (ABS) of pecan (Carya illinoinensis) in South Africa is caused by Alternaria alternata. This fungal pathogen impedes the development of pecan trees and leads to low yield in pecan nut production. The present study investigated the in vitro effect of six fungicides against the mycelial growth of A. alternata isolates from ABS symptoms. Fungicides tested include Tilt (propiconazole), Ortiva (azoxystrobin), AgTin (fentin hydroxide), and Bellis (boscalid + pyraclostrobin). All fungicides were applied in 3 concentrations (0.2, 1, and 5 μg mL-1). Tilt and Bumper 250 EC containing propiconazole active ingredient (demethylation Inhibitors) were the most effective and inhibited all mycelial growth from up to 6 days post-incubation. The other active ingredients (succinate dehydrogenase inhibitors, organotin compounds, and quinone outside inhibitors) showed 75-85% mycelial growth inhibition. The effective concentration to inhibit mycelial growth by 50% (EC50) was estimated for each isolate and fungicide. The overall mean EC50 values for each fungicide on the six isolates were 1.90 μg mL-1 (Tilt), 1.86 μg mL-1 (Ortiva), 1.53 μg mL-1 (AgTin), and 1.57 μg mL-1 for (Bellis). This initial screening suggested that propiconazole fungicide was the most effective for future field trials test and how these fungicides could be used in controlling ABS disease.
Collapse
Affiliation(s)
- Conrad Chibunna Achilonu
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| | - Gert Johannes Marais
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| |
Collapse
|
5
|
Song J, Zheng Z, Fang H, Li T, Wu Z, Qiu M, Shen H, Mei J, Xu L. Deposition and dissipation of difenoconazole in pepper and soil and its reduced application to control pepper anthracnose. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114591. [PMID: 36736234 DOI: 10.1016/j.ecoenv.2023.114591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The initial deposition amount, dissipation dynamics, retention rate, and field control efficacy of difenoconazole in pepper-soil system were studied with different application dosages, planting regions and patterns. The initial deposition amount of difenoconazole under the same application dosage showed the following order: fruits < cultivated soils < lower stems < upper stems < lower leaves < upper leaves, open field < greenhouse, and Changjiang < Cixi < Hefei < Langfang, respectively, which increased with increasing application dosage. The dissipation rates in leaves, stems, fruits and cultivated soils exhibited an initially fast and then slow trend, while the retention rates displayed a tendency of first increasing and then stabilizing with increasing application dosages. After 7 d of difenoconazole application, the retention rates at five concentrations were 10.3%- 39.1%, and the field efficacy mostly reached the minimum effective dose. These results suggested that difenoconazole could be reduced by 25% based on the minimum recommended dose meeting the requirements of field control efficacy for controlling pepper anthracnose.
Collapse
Affiliation(s)
- Jiajin Song
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhiruo Zheng
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Tongxin Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zishan Wu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongjian Shen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Mei
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
6
|
Zhang N, Xu Y, Zhang Q, Zhao L, Zhu Y, Wu Y, Li Z, Yang W. Detection of fungicide resistance to fludioxonil and tebuconazole in Fusarium pseudograminearum, the causal agent of Fusarium crown rot in wheat. PeerJ 2023; 11:e14705. [PMID: 36721780 PMCID: PMC9884474 DOI: 10.7717/peerj.14705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
Fusarium crown rot (FCR) on wheat is a soil-borne disease that affects the yield and quality of the produce. In 2020, 297 Fusarium pseudograminearum isolates were isolated from diseased FCR wheat samples from eight regional areas across Hebei Province in China. Baseline sensitivity of F. pseudograminearum to fludioxonil (0.0613 ± 0.0347 μg/mL) and tebuconazole (0.2328 ± 0.0840 μg/mL) were constructed based on the in vitro tests of 71 and 83 isolates, respectively. The resistance index analysis showed no resistance isolate to fludioxonil but two low-resistance isolates to tebuconazole in 2020. There was an increased frequency of resistant isolates from 2021 to 2022 based on the baseline sensitivity for tebuconazole. There was no cross-resistance between fludioxonil and tebuconazole. This study provides a significant theoretical and practical basis for monitoring the resistance of F. pseudograminearum to fungicides, especially the control of FCR.
Collapse
Affiliation(s)
- Na Zhang
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
| | - Yiying Xu
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
- Shangqiu Institute of Technology, Shangqiu, Henan, China
| | - Qi Zhang
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
| | - Le Zhao
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
| | - Yanan Zhu
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
| | - Yanhui Wu
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
| | - Zhen Li
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
| | - Wenxiang Yang
- College of Plant Protection, Hebei Agricultrual University, Baoding, Hebei, China
| |
Collapse
|