1
|
Wang H, Ma G, Fan Z, Wang H, Xu X. Low temperature storage leads to advanced upregulation of typical virulence regulators, pyk and purR of enterotoxigenic Staphylococcus aureus cultured on chicken meat. Food Microbiol 2025; 128:104719. [PMID: 39952763 DOI: 10.1016/j.fm.2024.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Staphylococcal enterotoxins have long been studied due to the food-borne illness caused and complex intracellular virulence regulation involved. Along with the popularized application of cold chain production of meat products, there is important significance to explore the influence of low temperature on enterotoxin genes expression correlated to regulators under meat cultivation. In this study, SEA and SEB type Staphylococcus aureus strains (designated Sa08 and Sa13 respectively) were cultivated on chicken meat at 8 and 25 °C, typical virulence regulators (agrA, saeS, srrB, rot, codY and icaA), enterotoxins (sea and seb) and metabolic factors (pyk and pyruvate, purR and xanthosine monophosphate) were monitored. As a result, cell density remained stable (104-105 CFU/g) at 8 °C with slight increase in 6 day, and there were drastic pyruvate accumulation along with storing days. Significant upregulation of typical virulence regulators, pyk, purR and seb occurred in post exponential phase at 25 °C (p < 0.001). Nevertheless, phenotypic indexes failed to correspond to transcriptional changes. Expression of seb depended on the upregulation of typical virulence regulators at 8 and 25 °C, and sea had independent expression profile different from typical virulence regulators at 8 °C. Comparing with 25 °C, consistent advanced upregulation of typical virulence regulators (except codY of Sa08), pyk and purR were observed both for Sa08 and Sa13 at 8 °C, and different strains exhibited varied early metabolic response but similar later metabolic status at 8 °C. These phenomena highlighted a concern that, enterotoxigenic S. aureus colonizing on chicken meat exhibited advanced upregulation of typical virulence regulators and close-related virulence at low temperature.
Collapse
Affiliation(s)
- Huawei Wang
- College of Food Science and Engineering, Qilu University of Technology, Shandong Institute of Science, Jinan, 250353, PR China
| | - Guangxia Ma
- College of Food Science and Engineering, Qilu University of Technology, Shandong Institute of Science, Jinan, 250353, PR China
| | - Zhenzhen Fan
- College of Food Science and Engineering, Qilu University of Technology, Shandong Institute of Science, Jinan, 250353, PR China
| | - Huhu Wang
- Key Laboratory of Meat Products Processing and Quality Control, MOA, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinglian Xu
- Key Laboratory of Meat Products Processing and Quality Control, MOA, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
2
|
Datta A, Saha R, Sahoo S, Roy AR, Basu S, Mahajan G, Panja SC, Mukherjee J. Production of an Innovative, Surface Area-Enhanced and Biodegradable Biofilm-Generating Device by 3D Printing. Eng Life Sci 2025; 25:e202400046. [PMID: 39996001 PMCID: PMC11849680 DOI: 10.1002/elsc.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/22/2024] [Accepted: 12/17/2024] [Indexed: 02/26/2025] Open
Abstract
The enhanced surface cylindrical flask (ESCF) consists of an eight-striped inner arrangement holding 16 standard microscopic slides placed inside a cylindrical vessel. The specially designed spatula-accessible slides can be withdrawn from the vessel during cultivation without disturbing biofilm formation through an innovative window-flap accessibility mechanism. The vessel and its accessories were three-dimensional (3D) printed by applying a fused deposition modeling technique utilizing biodegradable polylactic acid. Biofilms of clinically relevant bacteria namely Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli were successfully grown in the ESCF and observed through confocal laser scanning microscopy. Advantages of the device include an enhanced surface area for biofilm formation, ease of insertion and removal of microscopic slides, convenient fitting into standard rotary shaker platforms, creation of anoxic/microaerophilic environment inside the vessel as well as the feasibility of pH, dissolved gases, and metabolite measurements in the liquid surrounding the biofilm. The ESCF will find widespread application in medical, industrial, and environmental disciplines.
Collapse
Affiliation(s)
- Atulona Datta
- School of Environmental StudiesJadavpur UniversityKolkataIndia
| | - Rituparna Saha
- Department of Mechanical EngineeringJadavpur UniversityKolkataIndia
| | - Sovan Sahoo
- Department of Mechanical EngineeringJadavpur UniversityKolkataIndia
| | - Arup Ratan Roy
- School of Environmental StudiesJadavpur UniversityKolkataIndia
| | - Shayontani Basu
- School of Environmental StudiesJadavpur UniversityKolkataIndia
| | | | | | | |
Collapse
|
3
|
Kim S, Kim TJ. Inhibitory Effect of Moringa oleifera Seed Extract and Its Behenic Acid Component on Staphylococcus aureus Biofilm Formation. Antibiotics (Basel) 2024; 14:19. [PMID: 39858305 PMCID: PMC11762368 DOI: 10.3390/antibiotics14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Inhibiting biofilm formation without killing cells facilitates the physical removal of contaminating bacteria while minimizing the opportunity for resistant bacteria to emerge. Results: The M. oleifera methanolic seed extract contained 1.48% behenic acid, significantly inhibiting S. aureus biofilm formation. Although behenic acid did not affect cell growth, it inhibited biofilm formation in a concentration-dependent manner, up to 20 mg/L. The cell physiology changes caused by behenic acid are potentially unrelated to biofilm formation inhibition, as no correlation was noted between cell hydrophobicity, polysaccharide production, extracellular DNA production, or protein production and behenic acid concentration. Thus, it was hypothesized that the surfactant properties of behenic acid contribute to its ability to inhibit biofilm formation, as a similar biofilm-inhibitory effect was observed when S. aureus was administered 1% Tween 80, a surfactant. Methods: A methanolic extract of Moringa oleifera seeds was selected from a library of edible plant extracts to inhibit Staphylococcus aureus biofilm formation without cell killing. Conclusions: Behenic acid is a saturated fatty acid that is used as an ingredient in cosmetics and ointments; thus, behenic acid may benefit the skin by inhibiting the biofilm formation of S. aureus, a commensal skin pathogen.
Collapse
Affiliation(s)
| | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea;
| |
Collapse
|
4
|
Mogoi NN, Sifuna AW, Okoth PK, Reva O, Malaba R, Negesa R, Nyongesa KP, Osoro KE, Welch M. Staphylococcus aureus associated with surgical site infections in Western Kenya reveals genomic hotspots for pathogen evolution. Access Microbiol 2024; 6:000734.v4. [PMID: 39045253 PMCID: PMC11261728 DOI: 10.1099/acmi.0.000734.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 07/25/2024] Open
Abstract
Objectives. Staphylococcus aureus is one of the most common pathogens attributed to hospital infections. Although S. aureus infections have been well studied in developed countries, far less is known about the biology of the pathogen in sub-Saharan Africa. Methods. Here, we report on the isolation, antibiotic resistance profiling, whole genome sequencing, and genome comparison of six multi-drug resistant isolates of S. aureus obtained from a referral hospital in Kakamega, Western Kenya. Results. Five of the six isolates contained a 20.7 kb circular plasmid carrying blaZ (associated with resistance to β-lactam antibiotics). These five strains all belonged to the same sequence type, ST152. Despite the similarity of the plasmid in these isolates, whole genome sequencing revealed that the strains differed, depending on whether they were associated with hospital-acquired or community-acquired infections. Conclusion. The intriguing finding is that the hospital-acquired and the community-acquired isolates of S. aureus belonging to the same genotype, ST152, formed two separate sub-clusters in the phylogenetic tree and differed by the repertoire of accessory virulence genes. These data suggest ongoing adaptive evolution and significant genomic plasticity.
Collapse
Affiliation(s)
- Nyabera Nicholas Mogoi
- Department of Biological sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Anthony Wawire Sifuna
- Department of Medical Biochemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Patrick Kirsteen Okoth
- Department of Biological sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre For Bioinformatics And Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Rose Malaba
- Kakamega County General Teaching and Referral Hospital, Kakamega, Kenya
| | - Ruth Negesa
- Kakamega County General Teaching and Referral Hospital, Kakamega, Kenya
| | - Kuloba Peter Nyongesa
- Department of Medical Microbiology and Parasitology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Kombo Ezra Osoro
- Department of Medical Biochemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024; 65:1894-1910. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
6
|
Qiao J, Hu A, Zhou H, Lu Z, Meng F, Shi C, Bie X. Drug-loaded lipid nanoparticles improve the removal rates of the Staphylococcus aureus biofilm. Biotechnol J 2024; 19:e2300159. [PMID: 38403400 DOI: 10.1002/biot.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Biofilms of the foodborne pathogen Staphylococcus aureus show improved resistance to antibiotics and are difficult to eliminate. To enhance antibacteria and biofilm dispersion via extracellular matrix diffusion, a new lipid nanoparticle was prepared, which employed a mixture of phospholipids and a 0.8% surfactin shell. In the lipid nanoparticle, 31.56 μg mL-1 of erythromycin was encapsulated. The lipid nanoparticle size was approximately 52 nm and the zeta-potential was -67 mV, which was measured using a Marvin laser particle size analyzer. In addition, lipid nanoparticles significantly dispersed the biofilms of S. aureus W1, CICC22942, and CICC 10788 on the surface of stainless steel, reducing the total viable count of bacteria in the biofilms by 103 CFU mL-1 . In addition, the lipid nanoparticle can remove polysaccharides and protein components from the biofilm matrix. The results of laser confocal microscopy showed that the lipid nanoparticles effectively killed residual bacteria in the biofilms. Thus, to thoroughly eliminate biofilms on material surfaces in food factories to avoid repeated contamination, drug-lipid nanoparticles present a suitable method to achieve this.
Collapse
Affiliation(s)
- Jiaju Qiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- College of Life Science, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Antuo Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Changzheng Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|