1
|
Zhang H, Yuan X, He Y, Chen Y, Hu C, Chen J, Zhang L, Chen X, Guo A. A Novel Multiepitope Fusion Antigen as a Vaccine Candidate for the Prevention of Enterotoxigenic E. coli-Induced Calf Diarrhea. Vaccines (Basel) 2024; 12:457. [PMID: 38793708 PMCID: PMC11126018 DOI: 10.3390/vaccines12050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Calf diarrhea caused by enterotoxigenic E. coli (ETEC) poses an enormous economic challenge in the cattle industry. Fimbriae and enterotoxin are crucial virulence factors and vaccine targets of ETEC. Since these proteins have complicated components with large molecular masses, the development of vaccines by directly expressing these potential targets is cumbersome Therefore, this study aimed to develop a multiepitope fusion antigen designated as MEFA by integrating major epitopes of FanC and Fim41a subunits and a toxoid epitope of STa into the F17G framework. The 3D modeling predicted that the MEFA protein displayed the epitopes from these four antigens on its surface, demonstrating the desired structural characteristics. Then, the MEFA protein was subsequently expressed and purified for mouse immunization. Following that, our homemade ELISA showed that the mouse antiserum had a consistent increase in polyclonal antibody levels with the highest titer of 1:217 to MEFA. Furthermore, the western blot assay demonstrated that this anti-MEFA serum could react with all four antigens. Further, this antiserum exhibited inhibition on ETEC adhesion to HCT-8 cells with inhibitory rates of 92.8%, 84.3%, and 87.9% against F17+, F5+, and F41+ ETEC strains, respectively. Additionally, the stimulatory effect of STa toxin on HCT-8 cells was decreased by approximately 75.3% by anti-MEFA serum. This study demonstrates that the MEFA protein would be an antigen candidate for novel subunit vaccines for preventing ETEC-induced diarrhea in cattle.
Collapse
Affiliation(s)
- Haoyun Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xinwei Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanfei He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lei Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (X.Y.); (Y.H.); (Y.C.); (C.H.); (J.C.); (L.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Ruminant Bio-Products, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Gutiérrez RL, Porter CK, Harro C, Talaat K, Riddle MS, DeNearing B, Brubaker J, Maciel M, Laird RM, Poole S, Chakraborty S, Maier N, Sack DA, Savarino SJ. Efficacy Evaluation of an Intradermally Delivered Enterotoxigenic Escherichia coli CF Antigen I Fimbrial Tip Adhesin Vaccine Coadministered with Heat-Labile Enterotoxin with LT(R192G) against Experimental Challenge with Enterotoxigenic E. coli H10407 in Healthy Adult Volunteers. Microorganisms 2024; 12:288. [PMID: 38399692 PMCID: PMC10892241 DOI: 10.3390/microorganisms12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Enterotoxigenic E. coli (ETEC) is a principal cause of diarrhea in travelers, deployed military personnel, and children living in low to middle-income countries. ETEC expresses a variety of virulence factors including colonization factors (CF) that facilitate adherence to the intestinal mucosa. We assessed the protective efficacy of a tip-localized subunit of CF antigen I (CFA/I), CfaE, delivered intradermally with the mutant E. coli heat-labile enterotoxin, LTR192G, in a controlled human infection model (CHIM). METHODS Three cohorts of healthy adult subjects were enrolled and given three doses of 25 μg CfaE + 100 ng LTR192G vaccine intradermally at 3-week intervals. Approximately 28 days after the last vaccination, vaccinated and unvaccinated subjects were admitted as inpatients and challenged with approximately 2 × 107 cfu of CFA/I+ ETEC strain H10407 following an overnight fast. Subjects were assessed for moderate-to-severe diarrhea for 5 days post-challenge. RESULTS A total of 52 volunteers received all three vaccinations; 41 vaccinated and 43 unvaccinated subjects were challenged and assessed for moderate-to-severe diarrhea. Naïve attack rates varied from 45.5% to 64.7% across the cohorts yielding an overall efficacy estimate of 27.8% (95% confidence intervals: -7.5-51.6%). In addition to reducing moderate-severe diarrhea rates, the vaccine significantly reduced loose stool output and overall ETEC disease severity. CONCLUSIONS This is the first study to demonstrate protection against ETEC challenge after intradermal vaccination with an ETEC adhesin. Further examination of the challenge methodology is necessary to address the variability in naïve attack rate observed among the three cohorts in the present study.
Collapse
Affiliation(s)
- Ramiro L. Gutiérrez
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Clayton Harro
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Kawsar Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Mark S. Riddle
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Barbara DeNearing
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Jessica Brubaker
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Milton Maciel
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Renee M. Laird
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Steven Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Subra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | | | - David A. Sack
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Stephen J. Savarino
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| |
Collapse
|
3
|
Fereshteh S, Haririzadeh Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F. Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology. PLoS One 2023; 18:e0289609. [PMID: 37535697 PMCID: PMC10399887 DOI: 10.1371/journal.pone.0289609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.
Collapse
Affiliation(s)
| | | | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Doran MH, Baker JL, Dahlberg T, Andersson M, Bullitt E. Three structural solutions for bacterial adhesion pilus stability and superelasticity. Structure 2023; 31:529-540.e7. [PMID: 37001523 PMCID: PMC10164138 DOI: 10.1016/j.str.2023.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/22/2023]
Abstract
Bacterial adhesion pili are key virulence factors that mediate host-pathogen interactions in diverse epithelial environments. Deploying a multimodal approach, we probed the structural basis underpinning the biophysical properties of pili originating from enterotoxigenic (ETEC) and uropathogenic bacteria. Using cryo-electron microscopy we solved the structures of three vaccine target pili from ETEC bacteria, CFA/I, CS17, and CS20. Pairing these and previous pilus structures with force spectroscopy and steered molecular dynamics simulations, we find a strong correlation between subunit-subunit interaction energies and the force required for pilus unwinding, irrespective of genetic similarity. Pili integrate three structural solutions for stabilizing their assemblies: layer-to-layer interactions, N-terminal interactions to distant subunits, and extended loop interactions from adjacent subunits. Tuning of these structural solutions alters the biophysical properties of pili and promotes the superelastic behavior that is essential for sustained bacterial attachment.
Collapse
Affiliation(s)
- Matthew H Doran
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ 08628, USA
| | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|