1
|
Sun L, Ayele Shewa W, Bossy K, Dagnew M. Partial denitrification in rope-type biofilm reactors: Performance, kinetics, and microflora using internal vs. external carbon sources. BIORESOURCE TECHNOLOGY 2024; 404:130890. [PMID: 38788803 DOI: 10.1016/j.biortech.2024.130890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Stable nitrite accumulation through partial denitrification (PDN) represents an efficient pathway to support the anammox process, but limited studies explored the internal wastewater carbon sources and biofilm processes. This study assessed the viability of the PDN process, biofilm community evolution, and functional enzyme formation in rope-type biofilm media reactors using primary effluent (PE) and anaerobically pretreated wastewater carbon sources for the first time. Comparison was made with external carbon (acetate) under varied pH and biofilm thicknesses, maintaining a favourable sCOD: NO3-N ratio of 3. The wastewater's internal carbon resulted in thinner biofilms; nevertheless, modest nitrite accumulation (0.24 g/m2/d) occurred only at elevated pH. The highest nitrite accumulation (0.79 g/m2/d) was exhibited in the biofilm thickness-controlled acetate-fed reactor, featuring porous biofilms dominated by denitrifier Thauera (10.24 %) and imbalance between Nar, Nap, and Nir reductases. Using internal wastewater carbon sources offers a sustainable avenue for adopting the PDN process in full-scale application.
Collapse
Affiliation(s)
- Lin Sun
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Wudneh Ayele Shewa
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Kevin Bossy
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada.
| |
Collapse
|
2
|
Siagian UWR, Friatnasary DL, Khoiruddin K, Reynard R, Qiu G, Ting YP, Wenten IG. Membrane-aerated biofilm reactor (MABR): recent advances and challenges. REV CHEM ENG 2023. [DOI: 10.1515/revce-2021-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification–denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.
Collapse
Affiliation(s)
- Utjok W. R. Siagian
- Department of Petroleum Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Dwi L. Friatnasary
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Khoiruddin Khoiruddin
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Reynard Reynard
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology , B4-405, Daxuecheng, 510006 Guangzhou , China
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4, 117576 Singapore , Singapore
| | - I Gede Wenten
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
- Research Center for Bioscience and Biotechnology, Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| |
Collapse
|
3
|
Gierl L, Horn H, Wagner M. Impact of Fe 2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms-A Bacillus subtilis Case Study. Microorganisms 2022; 10:2234. [PMID: 36422304 PMCID: PMC9699539 DOI: 10.3390/microorganisms10112234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
Bivalent cations are known to affect the structural and mechanical properties of biofilms. In order to reveal the impact of Fe2+ ions within the cultivation medium on biofilm development, structure and stability, Bacillus subtilis biofilms were cultivated in mini-fluidic flow cells. Two different Fe2+ inflow concentrations (0.25 and 2.5 mg/L, respectively) and wall shear stress levels (0.05 and 0.27 Pa, respectively) were tested. Mesoscopic biofilm structure was determined daily in situ and non-invasively by means of optical coherence tomography. A set of ten structural parameters was used to quantify biofilm structure, its development and change. The study focused on characterizing biofilm structure and development at the mesoscale (mm-range). Therefore, biofilm replicates (n = 10) were cultivated and analyzed. Three hypotheses were defined in order to estimate the effect of Fe2+ inflow concentration and/or wall shear stress on biofilm development and structure, respectively. It was not the intention to investigate and describe the underlying mechanisms of iron incorporation as this would require a different set of tools applied at microscopic levels as well as the use of, i.e., omic approaches. Fe2+ addition influenced biofilm development (e.g., biofilm accumulation) and structure markedly. Experiments revealed the accumulation of FeO(OH) within the biofilm matrix and a positive correlation of Fe2+ inflow concentration and biofilm accumulation. In more detail, independent of the wall shear stress applied during cultivation, biofilms grew approximately four times thicker at 2.5 mg Fe2+/L (44.8 µmol/L; high inflow concentration) compared to the low Fe2+ inflow concentration of 0.25 mg Fe2+/L (4.48 µmol/L). This finding was statistically verified (Scheirer-Ray-Hare test, ANOVA) and hints at a higher stability of Bacillus subtilis biofilms (e.g., elevated cohesive and adhesive strength) when grown at elevated Fe2+ inflow concentrations.
Collapse
Affiliation(s)
- Luisa Gierl
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Harald Horn
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- German Technical and Scientific Association for Gas and Water (DVGW) Research Site at Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Michael Wagner
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Scherer K, Soerjawinata W, Schaefer S, Kockler I, Ulber R, Lakatos M, Bröckel U, Kampeis P, Wahl M. Influence of wettability and surface design on the adhesion of terrestrial cyanobacteria to additive manufactured biocarriers. Bioprocess Biosyst Eng 2022; 45:931-941. [PMID: 35235034 PMCID: PMC9033746 DOI: 10.1007/s00449-022-02712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Productive biofilms are gaining growing interest in research due to their potential of producing valuable compounds and bioactive substances such as antibiotics. This is supported by recent developments in biofilm photobioreactors that established the controlled phototrophic cultivation of algae and cyanobacteria. Cultivation of biofilms can be challenging due to the need of surfaces for biofilm adhesion. The total production of biomass, and thus production of e.g. bioactive substances, within the bioreactor volume highly depends on the available cultivation surface. To achieve an enlargement of surface area for biofilm photobioreactors, biocarriers can be implemented in the cultivation. Thereby, material properties and design of the biocarriers are important for initial biofilm formation and growth of cyanobacteria. In this study, special biocarriers were designed and additively manufactured to investigate different polymeric materials and surface designs regarding biofilm adhesion of the terrestrial cyanobacterium Nostoc flagelliforme (CCAP 1453/33). Properties of 3D-printed materials were characterized by determination of wettability, surface roughness, and density. To evaluate the influence of wettability on biofilm formation, material properties were specifically modified by gas-phase fluorination and biofilm formation was analyzed on biocarriers with basic and optimized geometry in shaking flask cultivation. We found that different polymeric materials revealed no significant differences in wettability and with identical surface design no significant effect on biomass adhesion was observed. However, materials treated with fluorination as well as optimized biocarrier design showed improved wettability and an increase in biomass adhesion per biocarrier surface.
Collapse
Affiliation(s)
- Kai Scherer
- Department of Environmental Planning and Technology, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768, Hoppstädten-Weiersbach, Germany
| | - Winda Soerjawinata
- Department of Environmental Planning and Technology, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768, Hoppstädten-Weiersbach, Germany
| | - Susanne Schaefer
- Department of Environmental Planning and Technology, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768, Hoppstädten-Weiersbach, Germany
| | - Isabelle Kockler
- Department of Environmental Planning and Technology, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768, Hoppstädten-Weiersbach, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663, Kaiserslautern, Germany
| | - Michael Lakatos
- Department of Applied Logistics and Polymer Sciences, University of Applied Sciences Kaiserslautern, Carl-Schurz Str. 10-16, 66953, Pirmasens, Germany
| | - Ulrich Bröckel
- Department of Environmental Planning and Technology, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768, Hoppstädten-Weiersbach, Germany
| | - Percy Kampeis
- Department of Environmental Planning and Technology, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768, Hoppstädten-Weiersbach, Germany
| | - Michael Wahl
- Department of Environmental Planning and Technology, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768, Hoppstädten-Weiersbach, Germany.
| |
Collapse
|
5
|
Walther J, Erdmann N, Stoffel M, Wastian K, Schwarz A, Strieth D, Muffler K, Ulber R. Passively immobilized cyanobacteria Nostoc species BB 92.2 in a moving bed photobioreactor (MBPBR): design, cultivation and characterization. Biotechnol Bioeng 2022; 119:1467-1482. [PMID: 35211957 DOI: 10.1002/bit.28072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 01/09/2023]
Abstract
The cyanobacterium Nostoc sp. BB 92.3. had shown antibacterial activity. A cultivation as biofilm, a self-forming matrix of cells and extracellular polymeric substances, increased the antibacterial effect. A new photobioreactor system was developed that allows a surface-associated cultivation of Nostoc sp. as biofilm. High-density polyethylene carriers operated as a moving bed were selected as surface for biomass immobilization. This system, well established in heterotrophic wastewater treatment, was for the first time used for phototrophic biofilms. The aim was a cultivation on a large scale without inhibiting growth while maximizing immobilization. Cultivation in a small photobioreactor (1.5 L) with different volumetric filling degrees of carriers (13.4-53.8 %) in a batch process achieved immobilization rates of 70-85 % and growth was similar to a no-carrier-control. In a larger photobioreactor (65-liter) essentially all of the biomass was immobilized on the carriers and the space-time yield of biomass (0.018 gcell dry weight L-1 day-1 ) was competitive compared to phototrophic biofilm cultivations from literature. The use of carriers increased the gas exchange in the reactor by a factor of 2.5-3, but doubled the mixing time. Enriched gassing with carbon dioxide resulted in a short-term increase in growth rate, but unexpectedly it also adversely changed the growth morphology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jakob Walther
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Niklas Erdmann
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Michael Stoffel
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Katharina Wastian
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany
| | - Dorina Strieth
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
6
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|