1
|
Liang B, Li L, He C, Wang M, Mao G. MRTO4 acts as an independent prognostic and immunological biomarker and is correlated with tumor microenvironment in hepatocellular carcinoma. Braz J Med Biol Res 2024; 57:e13780. [PMID: 39504066 PMCID: PMC11540254 DOI: 10.1590/1414-431x2024e13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024] Open
Abstract
Liver cancer is a malignant tumor found worldwide. mRNA turnover 4 homolog (MRTO4) is highly expressed in hepatocellular carcinoma (HCC) tissues, and we explored its relationship with HCC. All cancer data were downloaded from the Cancer Genome Atlas (TCGA), the Cancer Immune Atlas (TCIA), and the Human Protein Atlas (THPA). Stromal scores, immune scores, and ESTIMATE scores were calculated by "ESTIMATE" R package. Single sample gene set enrichment analysis and CIBERSORT were used to evaluate the immune status and infiltration of cancer tissues. pRRophetic R package was used to predict the half-maximal inhibitory concentration (IC50) of different drugs in each sample. MRTO4 overexpression was associated with poor prognosis in HCC, and positively correlated with the stage and grade of HCC patients. The average immunophenoscore (IPS) of the low MRTO4 group was significantly higher than that of the high MRTO4 group. Tumor microenvironment (TME) scores were significantly higher in the low MRTO4 group than in the high MRTO4 group in HCC. MRTO4 expression was positively correlated with tumor mutation burden (TMB) and was positively correlated with most immune checkpoint gene expressions in HCC. Drug sensitivity analysis showed significantly higher IC50 values for 5-fluorouracil, gemcitabine, and sorafenib in patients with low MRTO4 expression than in those with high MRTO4 expression. MRTO4 acts as an independent prognostic and immunological biomarker and is correlated with clinical stage, tumor grade, and drug sensitivity in HCC. It may serve as a putative therapeutic target and potential biomarker for prognosis of HCC.
Collapse
Affiliation(s)
- Baobao Liang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lan Li
- Department of Breast Surgery, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Chenyang He
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guochao Mao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Gemler BT, Warner BR, Bundschuh R, Fredrick K. Identification of leader-trailer helices of precursor ribosomal RNA in all phyla of bacteria and archaea. RNA (NEW YORK, N.Y.) 2024; 30:1264-1276. [PMID: 39043438 PMCID: PMC11404451 DOI: 10.1261/rna.080091.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Ribosomal RNAs are transcribed as part of larger precursor molecules. In Escherichia coli, complementary RNA segments flank each rRNA and form long leader-trailer (LT) helices, which are crucial for subunit biogenesis in the cell. A previous study of 15 representative species suggested that most but not all prokaryotes contain LT helices. Here, we use a combination of in silico folding and covariation methods to identify and characterize LT helices in 4464 bacterial and 260 archaeal organisms. Our results suggest that LT helices are present in all phyla, including Deinococcota, which had previously been suspected to lack LT helices. In very few organisms, our pipeline failed to detect LT helices for both 16S and 23S rRNA. However, a closer case-by-case look revealed that LT helices are indeed present but escaped initial detection. Over 3600 secondary structure models, many well supported by nucleotide covariation, were generated. These structures show a high degree of diversity. Yet, all exhibit extensive base-pairing between the leader and trailer strands, in line with a common and essential function.
Collapse
MESH Headings
- Nucleic Acid Conformation
- RNA, Archaeal/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- Archaea/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- Bacteria/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Precursors/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Base Sequence
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/chemistry
- Base Pairing
Collapse
Affiliation(s)
- Bryan T Gemler
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin R Warner
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ralf Bundschuh
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Börner J, Grützner J, Gerken F, Klug G. The Impact of the Major Endoribonucleases RNase E and RNase III and of the sRNA StsR on Photosynthesis Gene Expression in Rhodobacter sphaeroides Is Growth-Phase-Dependent. Int J Mol Sci 2024; 25:9123. [PMID: 39201809 PMCID: PMC11354728 DOI: 10.3390/ijms25169123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Rhodobacter sphaeroides is a facultative phototrophic bacterium that performs aerobic respiration when oxygen is available. Only when oxygen is present at low concentrations or absent are pigment-protein complexes formed, and anoxygenic photosynthesis generates ATP. The regulation of photosynthesis genes in response to oxygen and light has been investigated for decades, with a focus on the regulation of transcription. However, many studies have also revealed the importance of regulated mRNA processing. This study analyzes the phenotypes of wild type and mutant strains and compares global RNA-seq datasets to elucidate the impact of ribonucleases and the small non-coding RNA StsR on photosynthesis gene expression in Rhodobacter. Most importantly, the results demonstrate that, in particular, the role of ribonuclease E in photosynthesis gene expression is strongly dependent on growth phase.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany (F.G.)
| | | | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany (F.G.)
| |
Collapse
|
4
|
Meyer I, Volk M, Salto I, Moesser T, Chaoprasid P, Herbrüggen AS, Rohde M, Beckstette M, Heroven AK, Dersch P. RNase-mediated reprogramming of Yersinia virulence. PLoS Pathog 2024; 20:e1011965. [PMID: 39159284 PMCID: PMC11361751 DOI: 10.1371/journal.ppat.1011965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/29/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
RNA degradation is an essential process that allows bacteria to regulate gene expression and has emerged as an important mechanism for controlling virulence. However, the individual contributions of RNases in this process are mostly unknown. Here, we tested the influence of 11 potential RNases in the intestinal pathogen Yersinia pseudotuberculosis on the expression of its type III secretion system (T3SS) and associated effectors (Yops) that are encoded on the Yersinia virulence plasmid. We found that exoribonuclease PNPase and endoribonuclease RNase III inhibit T3SS and yop gene transcription by repressing the synthesis of LcrF, the master activator of Yop-T3SS. Loss of both RNases led to an increase in lcrF mRNA levels. Our work indicates that PNPase exerts its influence via YopD, which accelerates lcrF mRNA degradation. Loss of RNase III, on the other hand, results in the downregulation of the CsrB and CsrC RNAs, thereby increasing the availability of active CsrA, which has been shown previously to enhance lcrF mRNA translation and stability. This CsrA-promoted increase of lcrF mRNA translation could be supported by other factors promoting the protein translation efficiency (e.g. IF-3, RimM, RsmG) that were also found to be repressed by RNase III. Transcriptomic profiling further revealed that Ysc-T3SS-mediated Yop secretion leads to global reprogramming of the Yersinia transcriptome with a massive shift of the expression from chromosomal to virulence plasmid-encoded genes. A similar reprogramming was also observed in the RNase III-deficient mutant under non-secretion conditions. Overall, our work revealed a complex control system where RNases orchestrate the expression of the T3SS/Yop machinery on multiple levels to antagonize phagocytic uptake and elimination by innate immune cells.
Collapse
Affiliation(s)
- Ines Meyer
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marcel Volk
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Ileana Salto
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Theresa Moesser
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Paweena Chaoprasid
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Anne-Sophie Herbrüggen
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Manfred Rohde
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
- German Center for Infection Research (DZIF), Partner site HZI Braunschweig and associated site University of Münster, Münster, Germany
| |
Collapse
|
5
|
Lejars M, Hajnsdorf E. Bacterial RNase III: Targets and physiology. Biochimie 2024; 217:54-65. [PMID: 37482092 DOI: 10.1016/j.biochi.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Bacteria can rapidly adapt to changes in their environment thanks to the innate flexibility of their genetic expression. The high turnover rate of RNAs, in particular messenger and regulatory RNAs, provides an important contribution to this dynamic adjustment. Recycling of RNAs is ensured by ribonucleases, among which RNase III is the focus of this review. RNase III enzymes are highly conserved from prokaryotes to eukaryotes and have the specific ability to cleave double-stranded RNAs. The role of RNase III in bacterial physiology has remained poorly explored for a long time. However, transcriptomic approaches recently uncovered a large impact of RNase III in gene expression in a wide range of bacteria, generating renewed interest in the physiological role of RNase III. In this review, we first describe the RNase III targets identified from global approaches in 8 bacterial species within 4 Phyla. We then present the conserved and unique functions of bacterial RNase III focusing on growth, resistance to stress, biofilm formation, motility and virulence. Altogether, this review highlights the underestimated impact of RNase III in bacterial adaptation.
Collapse
Affiliation(s)
- Maxence Lejars
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
6
|
RNase III Participates in the Adaptation to Temperature Shock and Oxidative Stress in Escherichia coli. Microorganisms 2022; 10:microorganisms10040699. [PMID: 35456749 PMCID: PMC9032294 DOI: 10.3390/microorganisms10040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Bacteria thrive in ever-changing environments by quickly remodeling their transcriptome and proteome via complex regulatory circuits. Regulation occurs at multiple steps, from the transcription of genes to the post-translational modification of proteins, via both protein and RNA regulators. At the post-transcriptional level, the RNA fate is balanced through the binding of ribosomes, chaperones and ribonucleases. We aim to decipher the role of the double-stranded-RNA-specific endoribonuclease RNase III and to evaluate its biological importance in the adaptation to modifications of the environment. The inactivation of RNase III affects a large number of genes and leads to several phenotypical defects, such as reduced thermotolerance in Escherichia coli. In this study, we reveal that RNase III inactivation leads to an increased sensitivity to temperature shock and oxidative stress. We further show that RNase III is important for the induction of the heat shock sigma factor RpoH and for the expression of the superoxide dismutase SodA.
Collapse
|