1
|
Romanzin A, Braidot M, Beraldo P, Spanghero M. Rumen fermentation parameters and papillae development in Simmental growing bulls with divergent residual feed intake. Animal 2024; 18:101149. [PMID: 38663151 DOI: 10.1016/j.animal.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Residual feed intake (RFI), a widespread index used to measure animal feed efficiency, is influenced by various individual biological factors related to inter-animal variation that need to be assessed. Herein, 30 Simmental bulls, raised under the same farm conditions, were divided on the basis of RFI values into a high efficient group (HE, RFI = - 1.18 ± 0.33 kg DM/d, n = 15) and a low efficient group (LE, RFI = 0.92 ± 0.35 kg DM/d, n = 15). Subsequently, bulls were slaughtered at an average BW of 734 ± 39.4 kg. Their ruminal fermentation traits were analysed immediately after slaughtering and after 24 h of in vitro incubation. Furthermore, ruminal micro-biota composition and ruminal papillae morphology were examined. The LE group exhibited a higher propionate concentration as a percentage of total volatile fatty acids (17.3 vs 16.1%, P = 0.04) in the rumen fluid collected during slaughtering, which was also confirmed after in vitro fermentation (16.6 vs 15.4% respectively for LE and HE, P = 0.01). This phenomenon resulted in a significant alteration in the acetate-to-propionate ratio (A:P) with higher values for the HE group, both after slaughter (4.01 vs 3.66, P = 0.02) and after in vitro incubation (3.78 vs 3.66, P = 0.02). Methane production was similar in both groups either as absolute production (227 vs 218 mL for HE and LE, respectively) or expressed as a percentage of total gas (approximately 22%). Even if significant differences (P < 0.20) in the relative abundance of some bacterial genera were observed for the two RFI groups, no significant variations were observed in the alpha (Shannon index) and beta (Bray-Curtis index) diversity. Considering the papillae morphology, the LE subjects have shown higher length values (6.26 vs 4.90 mm, P < 0.01) while HE subjects have demonstrated higher papillae density (46.4 vs 40.5 n/cm2, P = 0.02). Histo-morphometric analysis did not reveal appreciable modifications in the total papilla thickness, boundaries or surface between the experimental groups. In conclusion, our results contribute to efforts to analyse the factors affecting feed efficiency at the ruminal level. Propionate production, papillae morphology and a few bacterial genera certainly play a role in this regard, although not a decisive one.
Collapse
Affiliation(s)
- A Romanzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/A, 33100 Udine, Italy
| | - M Braidot
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/A, 33100 Udine, Italy.
| | - P Beraldo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/A, 33100 Udine, Italy
| | - M Spanghero
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/A, 33100 Udine, Italy
| |
Collapse
|
2
|
Jiang X, Zhang Y, Nychas GJE, Zhu L, Mao Y, Li K, Yang X, Luo X, Dong P. Study of the transfer of Shiga toxin-producing Escherichia coli during the slaughter of cattle using molecular typing combined with epidemiologic data. Meat Sci 2024; 208:109378. [PMID: 37952270 DOI: 10.1016/j.meatsci.2023.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Investigation on the distribution and biological characteristics of Shiga-toxin producing Escherichia coli (STEC) during beef processing is essential for in-plant critical control points and food safety risk assessment. Serogroups and subtypes of stx genes of STEC strains isolated from beef processing lines were first investigated. Identification to cross-contamination among different sampling sites was further conducted by combining multilocus sequence typing (MLST) with the previous distribution and characterization data. The PCR-positive rate for STEC in 435 samples from two slaughter plants in China was 14.3% and the isolation rate for the 62 PCR positive and the entire set of 435 samples were 26% and 3.68% respectively. The existence of serotype O157:H7 (33%) and serogroups O121 (42%) and O26 (21%) as well as the high detection rate of high pathogenic gene stx2a (68%) in these serogroups indicated potential risk to the safety of beef. Traceability analysis showed that hide plays a critical role in cross-contamination between feces, lairage pens and post-washing carcasses from a molecular perspective. Intervening measures revolves around de-hiding should be involved in the in-plant safety control policy according to the tracing analysis.
Collapse
Affiliation(s)
- Xueqing Jiang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Lixian Zhu
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Ke Li
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaoyin Yang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Pengcheng Dong
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
3
|
Dittoe DK, Anderson RC, Krueger NA, Harvey RB, Poole TL, Crippen TL, Callaway TR, Ricke SC. Campylobacter jejuni Response When Inoculated in Bovine In Vitro Fecal Microbial Consortia Incubations in the Presence of Metabolic Inhibitors. Pathogens 2023; 12:1391. [PMID: 38133276 PMCID: PMC10747647 DOI: 10.3390/pathogens12121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Infection with the foodborne pathogen Campylobacter is the leading bacterial cause of human foodborne illness in the United States. The objectives of this experiment were to test the hypothesis that mixed microbial populations from the bovine rumen may be better at excluding Campylobacter than populations from freshly voided feces and to explore potential reasons as to why the rumen may be a less favorable environment for Campylobacter than feces. In an initial experiment, C. jejuni cultures inoculated without or with freshly collected bovine rumen fluid, bovine feces or their combination were cultured micro-aerobically for 48 h. Results revealed that C. jejuni grew at similar growth rates during the first 6 h of incubation regardless of whether inoculated with the rumen or fecal contents, with rates ranging from 0.178 to 0.222 h-1. However, C. jejuni counts (log10 colony-forming units/mL) at the end of the 48 h incubation were lowest in cultures inoculated with rumen fluid (5.73 log10 CFUs/mL), intermediate in cultures inoculated with feces or both feces and rumen fluid (7.16 and 6.36 log10 CFUs/mL) and highest in pure culture controls that had not been inoculated with the rumen or fecal contents (8.32 log10 CFUs/mL). In follow-up experiments intended to examine the potential effects of hydrogen and hydrogen-consuming methanogens on C. jejuni, freshly collected bovine feces, suspended in anaerobic buffer, were incubated anaerobically under either a 100% carbon dioxide or 50:50 carbon dioxide/hydrogen gas mix. While C. jejuni viability decreased <1 log10 CFUs/mL during incubation of the fecal suspensions, this did not differ whether under low or high hydrogen accumulations or whether the suspensions were treated without or with the mechanistically distinct methanogen inhibitors, 5 mM nitrate, 0.05 mM 2-bromosulfonate or 0.001 mM monensin. These results suggest that little if any competition between C. jejuni and hydrogen-consuming methanogens exists in the bovine intestine based on fecal incubations.
Collapse
Affiliation(s)
- Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Robin C. Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | | | - Roger B. Harvey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Toni L. Poole
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Tawni L. Crippen
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Todd R. Callaway
- Ruminant Nutrition, Ruminant Microbiology, and Preharvest Food Safety, Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA;
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
4
|
Dittoe DK, Anderson RC, Krueger NA, Harvey RB, Poole TL, Crippen TL, Callaway TR, Ricke SC. Survival of Campylobacter jejuni during in vitro culture with mixed bovine ruminal microorganisms in the presence of methanogen inhibitors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:711-717. [PMID: 37897369 DOI: 10.1080/03601234.2023.2273754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Foodborne pathogen Campylobacter jejuni has been associated with ruminants. The objectives of this experiment were to determine C. jejuni survivability in mixed in vitro rumen microbial populations and the impact on methane production with or without methane inhibitors 2-bromosulfonate (BES) and/or sodium nitrate. When inoculated into rumen microbial populations without or with 0.5 mM BES, 5.0 mM nitrate or their combination, C. jejuni viability decreased from 4.7 ± 0.1 log10 colony forming units (CFU)/mL after 24 h. Loss of C. jejuni viability was greater (P < 0.05) when incubated under 100% CO2 compared to 50% H2:50% CO2, decreasing 1.46 versus 1.15 log units, respectively. C. jejuni viability was also decreased (P < 0.05) by more than 0.43 log units by the anti-methanogen treatments. Rumen microbial populations produced less methane (P = 0.05) when incubated with than without C. jejuni regardless of whether under 100% CO2 or 50% H2:50% CO2. For either gas phase, nitrate was decreased (13.2 versus 37.9%) by the anti-methanogen treatments versus controls although not always significant. C. jejuni-inoculated populations metabolized 16.4% more (P < 0.05) nitrate under H2:CO2 versus 100% CO2. Apparently, C. jejuni can compete for H2 with methanogens but has limited survivability under rumen conditions.
Collapse
Affiliation(s)
- D K Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - R C Anderson
- United States Department of Agriculture/Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas, USA
| | - N A Krueger
- Agricultural Sciences, Blinn College, Bryan, Texas, USA
| | - R B Harvey
- United States Department of Agriculture/Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas, USA
| | - T L Poole
- United States Department of Agriculture/Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas, USA
| | - T L Crippen
- United States Department of Agriculture/Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas, USA
| | - T R Callaway
- Department of Animal and Dairy Science, Ruminant Nutrition, Ruminant Microbiology, and Preharvest Food Safety, University of Georgia, Athens, Georgia, USA
| | - S C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Purba RAP, Suong NTM, Paengkoum S, Paengkoum P, Liang JB. Iron sulfate and molasses treated anthocyanin-rich black cane silage improves growth performance, rumen fermentation, antioxidant status, and meat tenderness in goats. Anim Biosci 2023; 36:218-228. [PMID: 36108686 PMCID: PMC9834728 DOI: 10.5713/ab.22.0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study investigated the effects of feeding anthocyanin-rich black cane treated with ferrous sulfate and molasses on animal performance, rumen fermentation, microbial composition, blood biochemical indices, and carcass characteristics in meat goats. METHODS Thirty-two Thai-native×Anglo-Nubian crossbred male goats (14.47±2.3 kg) were divided equally into two groups (n = 16) to investigate the effect of feeding diet containing 50% untreated anthocyanin-rich black cane silage (BS) vs diet containing anthocyaninrich black cane silage treated with 0.03% ferrous sulfate and 4% molasses (TBS) on average daily gain (ADG) and dry matter intake (DMI). At the end of 90 d feeding trial, the goats were slaughtered to determine blood biochemical indices, rumen fermentation, microbial composition, and carcass characteristics differences between the two dietary groups. RESULTS Goats fed the TBS diet had greater ADG and ADG to DMI ratio (p<0.05). TBS diet did not affect rumen fluid pH; however, goats in the TBS group had lower rumen ammonia N levels (p<0.05) and higher total volatile fatty acid concentrations (p<0.05). Goats in the TBS group had a higher (p<0.05) concentration of Ruminococcus albus but a lower (p<0.05) concentration of methanogenic bacteria. The TBS diet also resulted in lower (p<0.05) thiobarbituric acid-reactive substances concentration but higher (p<0.05) total antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase concentrations in blood plasma, while having no effect on plasma protein, glucose, lipid, immunoglobin G, alanine transaminase, and aspartate aminotransferase. Meat from goats fed the TBS diet contained more intramuscular fat (p<0.05) and was more tender (p<0.05). CONCLUSION In comparison to goats fed a diet containing 50% untreated anthocyanin-rich black cane silage, feeding a diet containing 50% anthocyanin-rich black cane silage treated with 0.03% ferrous sulfate and 4% molasses improved rumen fermentation and reduced oxidative stress, resulting in higher growth and more tender meat.
Collapse
Affiliation(s)
- Rayudika Aprilia Patindra Purba
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang 30000,
Thailand
| | - Ngo Thi Minh Suong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang 30000,
Thailand,School of Animal Sciences, Agriculture Department, Can Tho University, Can Tho City 92000,
Vietnam
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Muang 30000,
Thailand,Corresponding Authors: Siwaporn Paengkoum, E-mail: . Pramote Paengkoum, E-mail:
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang 30000,
Thailand,Corresponding Authors: Siwaporn Paengkoum, E-mail: . Pramote Paengkoum, E-mail:
| | - Juan Boo Liang
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang 43400,
Malaysia
| |
Collapse
|
6
|
Lourenco JM, Welch CB, Krause TR, Wieczorek MA, Fluharty FL, Rothrock MJ, Pringle TD, Callaway TR. Fecal Microbiome Differences in Angus Steers with Differing Feed Efficiencies during the Feedlot-Finishing Phase. Microorganisms 2022; 10:microorganisms10061128. [PMID: 35744646 PMCID: PMC9227454 DOI: 10.3390/microorganisms10061128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal microbiota of cattle is important for feedstuff degradation and feed efficiency determination. This study evaluated the fecal microbiome of Angus steers with distinct feed efficiencies during the feedlot-finishing phase. Angus steers (n = 65), fed a feedlot-finishing diet for 82 days, had growth performance metrics evaluated. Steers were ranked based upon residual feed intake (RFI), and the 5 lowest RFI (most efficient) and 5 highest RFI (least efficient) steers were selected for evaluation. Fecal samples were collected on 0-d and 82-d of the finishing period and microbial DNA was extracted and evaluated by 16S rRNA gene sequencing. During the feedlot trial, inefficient steers had decreased (p = 0.02) Ruminococcaceae populations and increased (p = 0.01) Clostridiaceae populations. Conversely, efficient steers had increased Peptostreptococcaceae (p = 0.03) and Turicibacteraceae (p = 0.01), and a trend for decreased Proteobacteria abundance (p = 0.096). Efficient steers had increased microbial richness and diversity during the feedlot period, which likely resulted in increased fiber-degrading enzymes in their hindgut, allowing them to extract more energy from the feed. Results suggest that cattle with better feed efficiency have greater diversity of hindgut microorganisms, resulting in more enzymes available for digestion, and improving energy harvest in the gut of efficient cattle.
Collapse
Affiliation(s)
- Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
- Correspondence:
| | - Christina B. Welch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Taylor R. Krause
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Michael A. Wieczorek
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Francis L. Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, Richard B. Russell Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA;
| | - T. Dean Pringle
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| |
Collapse
|