1
|
Hidalgo-Ulloa A, van der Graaf CM, Sanchez-Andrea I, Buisman CJN. Continuous single-stage elemental sulfur reduction and copper sulfide precipitation under thermoacidophilic conditions. WATER RESEARCH 2023; 236:119948. [PMID: 37098320 DOI: 10.1016/j.watres.2023.119948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Metal sulfide precipitation is a viable technology for high-yield metal recovery from hydrometallurgical streams, with the potential to streamline the process design. A single-stage elemental sulfur (S0)-reducing and metal sulfide precipitating process can optimize the operational and capital costs associated with this technology, boosting the competitiveness of this technology for wider industrial application. However, limited research is available on biological sulfur reduction at high temperature and low pH, frequent conditions of hydrometallurgical process waters. Here we assessed the sulfidogenic activity of an industrial granular sludge previously shown to reduce S0 under hot (60-80 °C) and acidic conditions (pH 3.6). A 4 L gas-lift reactor was operated for 206 days and fed continuously with culture medium and copper. During the reactor operation, we explored the effect of the hydraulic retention time, copper loading rates, temperature, and H2 and CO2 flow rates on the volumetric sulfide production rates (VSPR). A maximum VSPR of 274 ± 6 mg·L-1·d-1 was reached, a 3.9-fold increase of the VSPR previously reported with this inoculum in batch operation. Interestingly, the maximum VSPR was achieved at the highest copper loading rates. At the maximum copper loading rate (509 mg·L-1·d-1), a 99.96% copper removal efficiency was observed. 16 s rRNA gene amplicon sequencing revealed an increased abundance of reads assigned to Desulfurella and Thermoanaerobacterium in periods of higher sulfidogenic activity.
Collapse
Affiliation(s)
- Adrian Hidalgo-Ulloa
- Department of Environmental Technology, Wageningen University & Research, The Netherlands.
| | | | | | - Cees J N Buisman
- Department of Environmental Technology, Wageningen University & Research, The Netherlands
| |
Collapse
|
2
|
Dabrowska M, Retka J, Uhrynowski W, Drewniak L. Use of lignocellulosic waste materials in the passive treatment of highly alkaline wastewater contaminated with sulfates and metals - From a laboratory study to pilot scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115967. [PMID: 35969973 DOI: 10.1016/j.jenvman.2022.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Passive wastewater treatment systems are an alternative to costly and ineffective chemical wastewater treatment methods. Lignocellulosic waste materials (LWM) are often used in passive wastewater treatment systems as a cheap and accessible source of nutrients. LWM, such as spent mushroom compost and woodchips, have been implemented for the successful management of mildly alkaline effluents, which constitute a large fraction of industrial wastewater. The objective of the study was to provide an extensive study of the parameters in four types of commonly used LWM (raw and composted sawdust, spent mushroom compost and woodchips), which can be used in the planning of a passive wastewater treatment plant. LWM were shown to remove up to 90% Zn2+ and Pb2+ from a model solution and neutralize wastewater. Moreover, the LWM were inhabited by a physiologically diverse microbial consortium containing sulfate-reducing and cellulolytic microbes, which can influence the treatment process. Another purpose of this study was to construct a pilot wastewater treatment plant based on the use of LWM and gravel and to present its ability to effectively treat extremely alkaline flotation wastewater (pH = 12) originating from a lead and zinc mine located in Montenegro. The treated wastewater had a unique, but challenging chemical composition for passive treatment, as it was heavily contaminated with sulfates (∼1200 mg/L) and lead (∼1 g/L). The removal within the developed installation reached a rate of 66%, while the treated effluent, after initial neutralization, was maintained at a pH of approximately 7. Lead and zinc concentrations after treatment were also kept at levels required by Montenegrin law for wastewater disposal.
Collapse
Affiliation(s)
- Maria Dabrowska
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jacek Retka
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; RDLS Ltd., Miecznikowa 1, 02-096 Warsaw, Poland; Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975, Warsaw, Poland
| | - Witold Uhrynowski
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; RDLS Ltd., Miecznikowa 1, 02-096 Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-096, Warsaw, Poland
| | - Lukasz Drewniak
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
3
|
Kalisz S, Kibort K, Mioduska J, Lieder M, Małachowska A. Waste management in the mining industry of metals ores, coal, oil and natural gas - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114239. [PMID: 34902687 DOI: 10.1016/j.jenvman.2021.114239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Waste generated due to mining activity poses a serious issue due to the large amounts generated, even up to 65 billion tons per year, and is often associated with the risk posed by its storage and environmental management. This work aims to review waste management in the mining industry of metals ores, coal, oil and natural gas. It includes an analysis and discussion on the possibilities for reuse of certain types of wastes generated from mining activity, and discusses the benefits, disadvantages and the impact of waste management on the environment. The article presents current methods of waste management arising during the extraction and processing of raw materials and the threats resulting from its application. Furthermore, the potential methods of mining waste management are discussed through an in-depth characterization of the properties and composition of various types of rocks. The presented work addresses not only the issues of more sustainable management of waste from the mining industry, but also responds to the current efforts to implement the assumptions of a circular economy, which is aimed at closing the loop. The methods of recycling by-products and treating waste as a resource more and more often not only meet environmental expectations, but also become a legal requirement. In this respect, the presented work can serve as a valuable support in decision-making about waste management.
Collapse
Affiliation(s)
- Szymon Kalisz
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Katarzyna Kibort
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Joanna Mioduska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Marek Lieder
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Aleksandra Małachowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| |
Collapse
|
4
|
Guo J, Li Y, Sun J, Sun R, Zhou S, Duan J, Feng W, Liu G, Jiang F. pH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: Sulfate reduction or sulfur reduction? WATER RESEARCH 2021; 204:117628. [PMID: 34507021 DOI: 10.1016/j.watres.2021.117628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Both biological sulfate reduction process and sulfur reduction process are attractive technologies for metal-laden wastewater treatment. However, the acidity stress of metal-laden wastewater could affect the sulfidogenic performance and the microbial community, weaken the stability, efficiency and cost-effectiveness of the biological sulfidogenic processes (BSP). In this study, long-term lab-scale trials were conducted with a sulfate-reducing bioreactor and a sulfur-reducing bioreactor to evaluate the effects of acidity on sulfidogenic activities and the microbial community of the BSP. In the 300-day trial, the sulfate-reducing bacteria (SRB)-driven BSP was stable in terms of sulfidogenic performance and microbial community with the decline of pH, while the sulfur-reducing bacteria (S0RB)-driven BSP achieved high-rate and low-cost sulfide production under neutral conditions but unstable under acidic conditions. With the decline of pH, the sulfide production rate (SPR) of the SRB-driven BSP stably increased from 30 to 83 mg S/L-h; while it decreased from 56 to 37 mg S/L-h in the S0RB-driven BSP with high fluctuation. The results of estimation were consistent with the thermodynamical calculations, in which the sulfur reduction process showed a better performance at pH 5-7, while the sulfate reduction process might gain more energy when pH<5. The stable sulfidogenic performance and microbial community diversity of the SRB-driven BSP could be attributed to the alkalinity produced in sulfate reduction to buffer the acidic stress. In comparison, the microbial community in the S0RB-driven BSP was significantly re-shaped by acidity stress, and the predominant sulfidogenic bacterium changed from Desulfovibrio at neutral condition, to Desulfurella at pH≤5.4. The stability of the microbial community significantly affected the SPR and the operational cost. Nevertheless, the organic consumption for sulfide production of the S0RB-driven BSP was still less than the SRB-driven BSP even in acidic conditions. Collectively, the S0RB-driven BSP was recommended under neutral or mild acid conditions, while the SRB-driven BSP was more suitable under fluctuating pH conditions, especially at low pH. Overall, this study presented the long-term performance of SRB- and S0RB-driven BSP under varying pH conditions, and provided guidance to determine the suitable BSP and operational cost for different metal-laden wastewater.
Collapse
Affiliation(s)
- Jiahua Guo
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Rongrong Sun
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shunjie Zhou
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiajun Duan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Wenwen Feng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guangli Liu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Editorial for Special Issue “Novel and Emerging Strategies for Sustainable Mine Tailings and Acid Mine Drainage Management”. MINERALS 2021. [DOI: 10.3390/min11080902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is one of the most pressing problems facing humanity this century [...]
Collapse
|