1
|
Sanyal SK, Pukala T, Mittal P, Reith F, Brugger J, Etschmann B, Shuster J. From biomolecules to biogeochemistry: Exploring the interaction of an indigenous bacterium with gold. CHEMOSPHERE 2023; 339:139657. [PMID: 37543229 DOI: 10.1016/j.chemosphere.2023.139657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Specialised microbial communities colonise the surface of gold particles in soils/sediments, and catalyse gold dissolution and re-precipitation, thereby contributing to the environmental mobility and toxicity of this 'inert' precious metal. We assessed the proteomic and physiological response of Serratia proteamaculans, the first metabolically active bacterium enriched and isolated directly from natural gold particles, when exposed to toxic levels of soluble Au3+ (10 μM). The results were compared to a metal-free blank, and to cultures exposed to similarly toxic levels of soluble Cu2+ (0.1 mM); Cu was chosen for comparison because it is closely associated with Au in nature due to similar geochemical properties. A total of 273 proteins were detected from the cells that experienced the oxidative effects of soluble Au, of which 139 (51%) were upregulated with either sole expression (31%) or had synthesis levels greater than the Au-free control (20%). The majority (54%) of upregulated proteins were functionally different from up-regulated proteins in the bacteria-copper treatment. These proteins were related to broad functions involving metabolism and biogenesis, followed by cellular process and signalling, indicating significant specificity for Au. This proteomic study revealed that the bacterium upregulates the synthesis of various proteins related to oxidative stress response (e.g., Monothiol-Glutaredoxin, Thiol Peroxidase, etc.) and cellular damage repair, which leads to the formation of metallic gold nanoparticles less toxic than ionic gold. Therefore, indigenous bacteria may mediate the toxicity of Au through two different yet simultaneous processes: i) repairing cellular components by replenishing damaged proteins and ii) neutralising reactive oxygen species (ROS) by up-regulating the synthesis of antioxidants. By connecting the fields of molecular bacteriology and environmental biogeochemistry, this study is the first step towards the development of biotechnologies based on indigenous bacteria applied to gold bio-recovery and bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Santonu K Sanyal
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tara Pukala
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia; School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | | | - Joël Brugger
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Jeremiah Shuster
- Department of Earth Sciences, Western University, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
2
|
Sanyal SK, Brugger J, Etschmann B, Pederson SM, Delport PWJ, Dixon R, Tearle R, Ludington A, Reith F, Shuster J. Metal resistant bacteria on gold particles: Implications of how anthropogenic contaminants could affect natural gold biogeochemical cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138698. [PMID: 32330727 DOI: 10.1016/j.scitotenv.2020.138698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In Earth's near-surface environments, gold biogeochemical cycling involves gold dissolution and precipitation processes, which are partly attributed to bacteria. These biogeochemical processes as well as abrasion (via physical transport) are known to act upon gold particles, thereby resulting in particle transformation including the development of pure secondary gold and altered morphology, respectively. While previous studies have inferred gold biogeochemical cycling from gold particles obtained from natural environments, little is known about how metal contamination in an environment could impact this cycle. Therefore, this study aims to infer how potentially toxic metal contaminants could affect the structure and chemistry of gold particles and therefore the biogeochemical cycling of gold. In doing so, river sediments and gold particles from the De Kaap Valley, South Africa, were analysed using both microanalytical and molecular techniques. Of the metal contaminants detected in the sediment, mercury can chemically interact with gold particles thereby directly altering particle morphology and "erasing" textural evidence indicative of particle transformation. Other metal contaminants (including mercury) indirectly affect gold cycling by exerting a selective pressure on bacteria living on the surface of gold particles. Particles harbouring gold-tolerant bacteria with diverse metal resistant genes, such as Arthrobacter sp. and Pseudomonas sp., contained nearly two times more secondary gold relative to particles harbouring bacteria with less gold-tolerance. In conclusion, metal contaminants can have a direct or indirect effect on gold biogeochemical cycling in natural environments impacted by anthropogenic activity.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Joël Brugger
- Monash University, Clayton, Victoria 3800, Australia
| | | | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Roger Dixon
- University of Pretoria, Pretoria 0001, South Africa
| | - Rick Tearle
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Davies Research Centre, School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|