1
|
Maestro MA, Seoane S. The Centennial Collection of VDR Ligands: Metabolites, Analogs, Hybrids and Non-Secosteroidal Ligands. Nutrients 2022; 14:nu14224927. [PMID: 36432615 PMCID: PMC9692999 DOI: 10.3390/nu14224927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of vitamin D a century ago, a great number of metabolites, analogs, hybrids and nonsteroidal VDR ligands have been developed. An enormous effort has been made to synthesize compounds which present beneficial properties while attaining lower calcium serum levels than calcitriol. This structural review covers VDR ligands published to date.
Collapse
Affiliation(s)
- Miguel A. Maestro
- Department of Chemistry-CICA, University of A Coruña, Campus da Zapateira, s/n, 15008 A Coruña, Spain
- Correspondence:
| | - Samuel Seoane
- Department of Physiology-CIMUS, University of Santiago, Campus Vida, 15005 Santiago, Spain
| |
Collapse
|
2
|
Seoane S, Gogoi P, Zárate-Ruíz A, Peluso-Iltis C, Peters S, Guiberteau T, Maestro MA, Pérez-Fernández R, Rochel N, Mouriño A. Design, Synthesis, Biological Activity, and Structural Analysis of Novel Des-C-Ring and Aromatic-D-Ring Analogues of 1α,25-Dihydroxyvitamin D 3. J Med Chem 2022; 65:13112-13124. [PMID: 36166643 DOI: 10.1021/acs.jmedchem.2c00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The toxic calcemic effects of the natural hormone 1α,25-dihydroxyvitamin D3 (1,25D3, 1,25-dihydroxycholecalciferol) in the treatment of hyperproliferative diseases demand the development of highly active and noncalcemic vitamin D analogues. We report the development of two highly active and noncalcemic analogues of 1,25D3 that lack the C-ring and possess an m-phenylene ring that replaces the natural D-ring. The new analogues (3a, 3b) are characterized by an additional six-carbon hydroxylated side chain attached either to the aromatic nucleus or to the triene system. Both compounds were synthesized by the Pd-catalyzed tandem cyclization/cross coupling approach starting from alkyne 6 and diphenol 8. Key steps include a stereoselective Cu-assisted addition of a Grignard reagent to an aromatic alkyne and a Takai olefination of an aromatic aldehyde. The new compounds are noncalcemic and show transcriptional and antiproliferative activities similar to 1,25D3. Structural analysis revealed that they induce a large conformational rearrangement of the vitamin D receptor around helix 6.
Collapse
Affiliation(s)
- Samuel Seoane
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avda. Barcelona s/n, Santiago de Compostela 15706, Spain
| | - Pranjal Gogoi
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| | - Araceli Zárate-Ruíz
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Institut National de La Santé et de La Recherche Médicale (INSERM), U1258; Centre National de Recherche Scientifique (CNRS), UMR7104, Université de Strasbourg, Strasbourg, Illkirch 67400, France
| | - Stefan Peters
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| | - Thierry Guiberteau
- Laboratoire ICube─Université de Strasbourg, CNRS UMR 7357, Strasbourg 67000, France
| | - Miguel A Maestro
- Department of Chemistry-CICA, University of A Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Román Pérez-Fernández
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avda. Barcelona s/n, Santiago de Compostela 15706, Spain
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Institut National de La Santé et de La Recherche Médicale (INSERM), U1258; Centre National de Recherche Scientifique (CNRS), UMR7104, Université de Strasbourg, Strasbourg, Illkirch 67400, France
| | - Antonio Mouriño
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| |
Collapse
|
3
|
The Synthesis and Biological Evaluation of D-Ring-Modified Vitamin D Analogues. Biomolecules 2021; 11:biom11111639. [PMID: 34827637 PMCID: PMC8615411 DOI: 10.3390/biom11111639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
The vitamin D3 structure consists of the A-ring, a linker originating from the B-ring, C-ring, D-ring, and side-chain moieties. Each unit has its unique role in expressing the biological activities of vitamin D3. Many efforts have been made to date to assess the possible clinical use of vitamin D. Some organic chemists focused on the D-ring structure of vitamin D and synthesized D-ring-modified vitamin D analogues, and their biological activities were studied. This review summarizes the synthetic methodologies of D-ring-modified vitamin D analogues, except for seco-D, and their preliminary biological profiles.
Collapse
|
4
|
Nieto-Sepulveda E, Bage AD, Evans LA, Hunt TA, Leach AG, Thomas SP, Lloyd-Jones GC. Kinetics and Mechanism of the Arase-Hoshi R2BH-Catalyzed Alkyne Hydroboration: Alkenylboronate Generation via B–H/C–B Metathesis. J Am Chem Soc 2019; 141:18600-18611. [DOI: 10.1021/jacs.9b10114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eduardo Nieto-Sepulveda
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew D. Bage
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Louise A. Evans
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Thomas A. Hunt
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Andrew G. Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Stephen P. Thomas
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|