1
|
Fahmy HM, Aboalasaad FA, Mohamed AS, Elhusseiny FA, Khadrawy YA, Elmekawy A. Evaluation of the Therapeutic Effect of Curcumin-Conjugated Zinc Oxide Nanoparticles on Reserpine-Induced Depression in Wistar Rats. Biol Trace Elem Res 2024; 202:2630-2644. [PMID: 37713054 PMCID: PMC11052778 DOI: 10.1007/s12011-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Depression, a devastating brain illness, necessitates the exploration of novel antidepressant treatments. We evaluated the antidepressant effects of free curcumin, zinc oxide nanoparticles (ZnO NPs), and curcumin-conjugated zinc oxide nanoparticles (Zn(cur)O NPs). The nanoformulations were extensively characterized using advanced techniques. An acute toxicity study ensured the safety of Zn(cur)O NPs. Rats were assigned to one of five groups: control, reserpine-induced depression model, treatment with ZnO NPs, free curcumin, or Zn(cur)O NPs. Behavioral assessments (forced swimming test [FST] and open-field test [OFT]) and neurochemical analyses were conducted. Zn(cur)O NPs exhibited superior efficacy in ameliorating reserpine-induced behavioral and neurochemical effects compared to free curcumin and ZnO NPs. The reserpine-induced model displayed reduced motor activity, swimming time, and increased immobility time in the FST and OFT. Treatment with Zn(cur)O NPs 45 mg/kg significantly improved motor activity and reduced immobility time. Furthermore, Zn(cur)O NPs decreased malondialdehyde (MDA) levels while increasing reduced glutathione (GSH) and catalase (CAT) levels. Additionally, concentrations of serotonin (5-HT) and norepinephrine (NE) increased. In conclusion, curcumin-conjugated zinc oxide nanoparticles demonstrate potent antidepressant effects, alleviating depressive-like behavior in rats. These findings support Zn(cur)O NPs as a promising therapeutic strategy for depression management, warranting further investigation and clinical validation.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Ayman S Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ahmed Elmekawy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
2
|
Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, Ahmad S. In Silico Study and Effects of BDMC33 on TNBS-Induced BMP Gene Expressions in Zebrafish Gut Inflammation-Associated Arthritis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238304. [PMID: 36500396 PMCID: PMC9740523 DOI: 10.3390/molecules27238304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
Collapse
Affiliation(s)
- Farhana Mostofa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Fatihah Mohd-Yusoff
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-97696724
| |
Collapse
|
3
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Katasonov AB. [Curcumin as an ajuvant treatment of depression: mechanisms of action and application prospects]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:125-131. [PMID: 32307422 DOI: 10.17116/jnevro2020120021125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Curcumin, a natural compound found in the rhizomes of turmeric, has a pronounced anti-inflammatory activity. Rodent models of depression show that this activity is similar to the effect of antidepressants (AD). Experimental data indicate that this activity may be related to the effect of curcumin on the monoamine cycle, oxidative and nitrosative stress, neurogenesis, hypothalamic-pituitary-adrenal, and immune systems. A number of meta-analyzes indicate the effectiveness of the combined use of curcumin with antidepressants in the treatment of depression. The mechanism of action of curcumin, as well as the prospects for its further use are considered.
Collapse
|
5
|
Ramaholimihaso T, Bouazzaoui F, Kaladjian A. Curcumin in Depression: Potential Mechanisms of Action and Current Evidence-A Narrative Review. Front Psychiatry 2020; 11:572533. [PMID: 33329109 PMCID: PMC7728608 DOI: 10.3389/fpsyt.2020.572533] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating disorders. Current available treatments are somehow limited, so alternative therapeutic approaches targeting different biological pathways are being investigated to improve treatment outcomes. Curcumin is the main active component in the spice turmeric that has been used for centuries in Ayurvedic medicine to treat a variety of conditions, including anxiety and depressive disorders. In the past decades, curcumin has drawn researchers' attention and displays a broad range of properties that seem relevant to depression pathophysiology. In this review, we break down the potential mechanisms of action of curcumin with emphasis on the diverse systems that can be disrupted in MDD. Curcumin has displayed, in a number of studies, a potency in modulating neurotransmitter concentrations, inflammatory pathways, excitotoxicity, neuroplasticity, hypothalamic-pituitary-adrenal disturbances, insulin resistance, oxidative and nitrosative stress, and endocannabinoid system, all of which can be involved in MDD pathophysiology. To date, a handful of clinical trials have been published and suggest a benefit of curcumin in MDD. With evidence that is progressively growing, curcumin appears as a promising alternative option in the management of MDD.
Collapse
|
6
|
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2019; 66:1-16. [PMID: 30660832 DOI: 10.1016/j.jnutbio.2018.12.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Monocytes and macrophages are important cells of the innate immune system that have diverse functions, including defense against invading pathogens, removal of dead cells by phagocytosis, antigen presentation in the context of MHC class I and class II molecules, and production of various pro-inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1. In addition, pro-inflammatory (M1) and anti-inflammatory (M2) macrophages clearly play important roles in the progression of several inflammatory diseases. Therefore, therapies that target macrophage polarization and function by either blocking their trafficking to sites of inflammation, or skewing M1 to M2 phenotype polarization may hold clinical promise in several inflammatory diseases. Dietary-derived polyphenols have potent natural anti-oxidative properties. Within this group of polyphenols, curcumin has been shown to suppress macrophage inflammatory responses. Curcumin significantly reduces co-stimulatory molecules and also inhibits MAPK activation and the translocation of NF-κB p65. Curcumin can also polarize/repolarize macrophages toward the M2 phenotype. Curcumin-treated macrophages have been shown to be highly efficient at antigen capture and endocytosis via the mannose receptor. These novel findings provide new perspectives for the understanding of the immunopharmacological role of curcumin, as well as its therapeutic potential for impacting macrophage polarization and function in the context of inflammation-related disease. However, the precise effects of curcumin on the migration, differentiation, polarization and immunostimulatory functions of macrophages remain unknown. Therefore, in this review, we summarized whether curcumin can influence macrophage polarization, surface molecule expression, cytokine and chemokine production and their underlying pathways in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
7
|
Curc-mPEG454, a PEGylated Curcumin Derivative, Improves Anti-inflammatory and Antioxidant Activities: a Comparative Study. Inflammation 2018; 41:579-594. [PMID: 29234949 DOI: 10.1007/s10753-017-0714-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously demonstrated that a PEGylated curcumin (Curc-mPEG454) significantly inhibited cyclooxygenase 2 (COX-2) expression and improved the progression of liver fibrosis. The current study systematically evaluates its anti-inflammatory and antioxidant activities in vitro in a comparative study with curcumin, aspirin, NS-398, and vitamin C. RAW264.7 murine macrophages were pretreated with Curc-mPEG454, curcumin, aspirin, NS-398, or vitamin C at the indicated concentration for 2 h; then, the cells were stimulated with 1 μg/mL lipopolysaccharide (LPS) for 24 h. The levels of pro-inflammatory cytokines and mediators, including IL-6, TNF-α, PGE2, NO, and GSH, and the activities of COX-2, SOD, and CAT, and the transcription factors involved in inflammation, such as NF-κB, c-Jun, and Nrf2, were measured. Curc-mPEG454 showed lower cytotoxicity (IC50 57.8 μM) when compared with that of curcumin (IC50 32.6 μM) and inhibited the release of the inflammatory cytokines IL-6, TNF-α, IL-1β, and MCP-1 in a concentration-dependent manner. At 16 μM, Curc-mPEG454 was most potent in the suppression of COX-2 expression at a transcriptional level rather than in the suppression of the catalytic activity of COX-2. Like curcumin, Curc-mPEG454 significantly reduced intracellular ROS production and enhanced the activities of SOD and CAT and the level of GSH to protect cells from LPS-induced oxidative injury. Further, its anti-inflammatory and antioxidation mechanisms are related to inhibition of NF-κB p65 nuclear translocation and c-Jun phosphorylation and to activation of Nrf2. Taken together, these findings indicate that PEGylation of curcumin not only improves its biological properties but also interferes with multiple targets involved in the inflammatory response. Curc-mPEG454 is a powerful and beneficial anti-inflammatory and antioxidant agent that merits further investigation. Graphical Abstract ᅟ.
Collapse
|
8
|
Fanaei H, Khayat S, Kasaeian A, Javadimehr M. Effect of curcumin on serum brain-derived neurotrophic factor levels in women with premenstrual syndrome: A randomized, double-blind, placebo-controlled trial. Neuropeptides 2016; 56:25-31. [PMID: 26608718 DOI: 10.1016/j.npep.2015.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Premenstrual syndrome (PMS) is a variety of physical, mental, and behavioral symptoms that start during the late luteal phase of the menstrual cycle, and the symptoms disappear after the onset of menses. Serum brain-derived neurotrophic factor (BDNF) levels during luteal phase in women associated with PMS have more alterations than women not suffering from PMS. In this regard, altered luteal BDNF levels in women with PMS might play a role in a set of psychological and somatic symptoms of the PMS. Studies of last decade revealed neuroprotective effects of curcumin and its ability to increase BDNF levels. In the present study, we evaluated the effect of curcumin on serum BDNF level and PMS symptoms severity in women with PMS. Present study is a Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Curcumin treatment was given for three successive menstrual cycles and each cycle ran 10 days. After having identified persons with PMS, participants were randomly allocated into placebo (n=35) and curcumin (n=35) groups. Each sample in placebo and curcumin groups received two capsules daily for seven days before menstruation and for three days after menstruation for three successive menstrual cycles. Participants noted the severity of the symptoms mentioned in the daily record questionnaire. Self-report was used to determine menstrual cycle phase of participants. At the fourth day of each menstrual cycle venous blood samples were collected for BDNF measurement by ELISA method. Before intervention, BDNF levels and mean scores of PMS symptoms (mood, behavioral and physical symptoms) between two groups showed no significant differences. But in curcumin group first, second and third cycles after interventions BDNF levels were significantly higher and mean scores of PMS symptoms were significantly less than placebo group. Based on our results part of these beneficial effects of curcumin may be mediated through enhancing serum BDNF levels in women with PMS.
Collapse
Affiliation(s)
- Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Samira Khayat
- Department of Midwifery and Reproductive Health, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Reproductive Health, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Kasaeian
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mani Javadimehr
- School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
9
|
Khayat S, Fanaei H, Kheirkhah M, Moghadam ZB, Kasaeian A, Javadimehr M. Curcumin attenuates severity of premenstrual syndrome symptoms: A randomized, double-blind, placebo-controlled trial. Complement Ther Med 2015; 23:318-24. [PMID: 26051565 DOI: 10.1016/j.ctim.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 11/16/2014] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
|
10
|
Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord 2015; 167:368-75. [PMID: 25046624 DOI: 10.1016/j.jad.2014.06.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Curcumin, the principal curcuminoid derived from the spice turmeric, influences several biological mechanisms associated with major depression, namely those associated with monoaminergic activity, immune-inflammatory and oxidative and nitrosative stress pathways, hypothalamus-pituitary-adrenal (HPA) axis activity and neuroprogression. We hypothesised that curcumin would be effective for the treatment of depressive symptoms in individuals with major depressive disorder. METHODS In a randomised, double-blind, placebo-controlled study, 56 individuals with major depressive disorder were treated with curcumin (500 mg twice daily) or placebo for 8 weeks. The primary measure was the Inventory of Depressive Symptomatology self-rated version (IDS-SR30). Secondary outcomes included IDS-SR30 factor scores and the Spielberger State-Trait Anxiety Inventory (STAI). RESULTS From baseline to week 4, both curcumin and placebo were associated with improvements in IDS-SR30 total score and most secondary outcome measures. From weeks 4 to 8, curcumin was significantly more effective than placebo in improving several mood-related symptoms, demonstrated by a significant group x time interaction for IDS-SR30 total score (F1, 53=4.22, p=.045) and IDS-SR30 mood score (F1, 53=6.51, p=.014), and a non-significant trend for STAI trait score (F1, 48=2.86, p=.097). Greater efficacy from curcumin treatment was identified in a subgroup of individuals with atypical depression. CONCLUSIONS Partial support is provided for the antidepressant effects of curcumin in people with major depressive disorder, evidenced by benefits occurring 4 to 8 weeks after treatment. LIMITATIONS Investigations with larger sample sizes, over extended treatment periods, and with varying curcumin dosages are required.
Collapse
Affiliation(s)
- Adrian L Lopresti
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia 6150, Australia.
| | - Michael Maes
- Impact Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Garth L Maker
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia
| | - Sean D Hood
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter D Drummond
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
11
|
Seo HJ, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU. Curcumin as a putative antidepressant. Expert Rev Neurother 2015; 15:269-80. [PMID: 25644944 DOI: 10.1586/14737175.2015.1008457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to inadequate efficacy of antidepressants, various new chemical entities and agents of natural origin have been tested for therapeutic efficacy both alone and to augment existing antidepressants, producing varied clinical results. This article summarizes the basic properties of curcumin and its mechanisms of action, with specific emphasis on the etiopathogenesis of depression, preclinical and current clinical evidence, and future research directions, to better understand the possible role of curcumin in treating depression. Curcumin may have antidepressant activities with diverse mechanisms of action involving primarily neurotransmitters, transcription pathways, neurogenesis, the hypothalamic-pituitary-adrenal axis and inflammatory and immune pathways, as demonstrated in various animal and human studies. Current published randomized clinical trials suggest a small, non-significant benefit of curcumin for major depression. More adequately-powered and methodologically improved studies are mandatory.
Collapse
Affiliation(s)
- Ho-Jun Seo
- Department of Psychiatry, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Leong SW, Faudzi SMM, Abas F, Aluwi MFFM, Rullah K, Wai LK, Bahari MNA, Ahmad S, Tham CL, Shaari K, Lajis NH. Synthesis and sar study of diarylpentanoid analogues as new anti-inflammatory agents. Molecules 2014; 19:16058-81. [PMID: 25302700 PMCID: PMC6271425 DOI: 10.3390/molecules191016058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure–activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
Collapse
Affiliation(s)
- Sze Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Drug and Herbal Research Centre Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd. Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Kamal Rullah
- Drug and Herbal Research Centre Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd. Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Lam Kok Wai
- Drug and Herbal Research Centre Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd. Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Mohd Nazri Abdul Bahari
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nordin H Lajis
- Al-Moalim BinLaden Chair for Scientific Miracles of Prophetic Medicine, Scientific Chairs Unit, Taibah University, P.O. Box 30001, Madinah al Munawarah 41311, Saudi Arabia.
| |
Collapse
|
13
|
Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, Syahida A. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro. Int J Rheum Dis 2014; 18:616-27. [PMID: 24832356 DOI: 10.1111/1756-185x.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. METHODS Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. RESULTS The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. CONCLUSIONS BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention.
Collapse
Affiliation(s)
- Ka-Heng Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Faridah Abas
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Food Science and Technology, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | | | - Khozirah Shaari
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Nordin Haji Lajis
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Daud Ahmad Israf
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Ahmad Syahida
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
14
|
Ao GZ, Chu XJ, Ji YY, Wang JW. Antioxidant properties and PC12 cell protective effects of a novel curcumin analogue (2E,6E)-2,6-bis(3,5- dimethoxybenzylidene)cyclohexanone (MCH). Int J Mol Sci 2014; 15:3970-88. [PMID: 24603537 PMCID: PMC3975378 DOI: 10.3390/ijms15033970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/15/2022] Open
Abstract
The antioxidative properties of a novel curcumin analogue (2E,6E)-2,6-bis(3,5-dimethoxybenzylidene)cyclohexanone (MCH) were assessed by several in vitro models, including superoxide anion, hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and PC12 cell protection from H2O2 damage. MCH displayed superior O2•- quenching abilities compared to curcumin and vitamin C. In vitro stability of MCH was also improved compared with curcumin. Exposure of PC12 cells to 150 µM H2O2 caused a decrease of antioxidant enzyme activities, glutathione (GSH) loss, an increase in malondialdehyde (MDA) level, and leakage of lactate dehydrogenase (LDH), cell apoptosis and reduction in cell viability. Pretreatment of the cells with MCH at 0.63-5.00 µM before H2O2 exposure significantly attenuated those changes in a dose-dependent manner. MCH enhanced cellular expression of transcription factor NF-E2-related factor 2 (Nrf2) at the transcriptional level. Moreover, MCH could mitigate intracellular accumulation of reactive oxygen species (ROS), the loss of mitochondrial membrane potential (MMP), and the increase of cleaved caspase-3 activity induced by H2O2. These results show that MCH protects PC12 cells from H2O2 injury by modulating endogenous antioxidant enzymes, scavenging ROS, activating the Nrf2 cytoprotective pathway and prevention of apoptosis.
Collapse
Affiliation(s)
- Gui-Zhen Ao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Xiao-Jing Chu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Yuan-Yuan Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Jian-Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Brietzke E, Mansur RB, Zugman A, Carvalho AF, Macêdo DS, Cha DS, Abílio VC, McIntyre RS. Is there a role for curcumin in the treatment of bipolar disorder? Med Hypotheses 2013; 80:606-12. [DOI: 10.1016/j.mehy.2013.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
|
16
|
Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 2012; 26:1512-24. [PMID: 23035031 DOI: 10.1177/0269881112458732] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin is the principal curcuminoid of the popular Indian spice turmeric and has attracted increasing attention for the treatment of a range of conditions. Research into its potential as a treatment for depression is still in its infancy, although several potential antidepressant mechanisms of action have been identified. Research completed to date on the multiple effects of curcumin is reviewed in this paper, with a specific emphasis on the biological systems that are compromised in depression. The antidepressant effects of curcumin in animal models of depression are summarised, and its influence on neurotransmitters such as serotonin and dopamine is detailed. The effects of curcumin in moderating hypothalamus-pituitary-adrenal disturbances, lowering inflammation and protecting against oxidative stress, mitochondrial damage, neuroprogression and intestinal hyperpermeability, all of which are compromised in major depressive disorder, are also summarised. With increasing interest in natural treatments for depression, and efforts to enhance current treatment outcomes, curcumin is presented as a promising novel, adjunctive or stand-alone natural antidepressant.
Collapse
|