1
|
Banaś J, Michalczyk M, Banaś M. Application of Spectrofluorimetry to Evaluate Quality Changes in Stored Blue Honeysuckle Berry ( Lonicera kamtschatica) Preserves. Molecules 2025; 30:1012. [PMID: 40076237 PMCID: PMC11901830 DOI: 10.3390/molecules30051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this study was to use a rapid and non-invasive spectrofluorimetric method to evaluate the qualitative changes occurring in stored Kamchatka berry preserves. Honeysuckle berries were preserved by freezing (-24 °C) and pasteurisation with and without sugar addition. Pasteurised samples were stored at 6 ± 1 °C and 22 ± 1 °C for 9 months. During storage, spectrofluorimetric spectra in the bioactive compounds' fluorescence range were registered. The obtained synchronous spectra were used in a statistical analysis involving principal component analysis (PCA) and linear discriminant analysis (LDA). The analysis of both types of registered spectra indicated that sugar addition could stabilise some phenolic compounds, like gallic acid, p-coumaric acid, and phloridzin. Moreover, some differences in the degradation rate of each analysed compound were observed depending on the preservation method used. Besides the phenolic compounds, other fluorescent compounds like B-vitamins and chlorophyll forms were also observed. Pasteurisation caused the distinct degradation of protochlorophyll forms, whereas practically no changes in the amounts of vitamins B3 and B9 were observed. Based on the results of statistical analyses of PCA and LDA, the effect on the products' composition was moderate for the storage time and relatively low in the case of the storage temperature. The obtained results indicated that spectrofluorimetry would be a useful method for the detailed characterisation of fruit products.
Collapse
Affiliation(s)
- Joanna Banaś
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| | - Magdalena Michalczyk
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| | - Marian Banaś
- Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Kraków, A. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
2
|
He Q, Pang K, Tian L, Ma Y, Guo X, Zhang J, Yu M. Melamine-Derived Mesoporous Carbon for Efficient and Selective Removal of Trace Hg(II) from Honeysuckle Decoction. ACS OMEGA 2024; 9:44931-44941. [PMID: 39554436 PMCID: PMC11561613 DOI: 10.1021/acsomega.4c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Melamine-derived mesoporous carbon, which was obtained from pyrolysis of modified melamine, was employed for the purpose of eliminating trace amounts of Hg(II) from honeysuckle decoction. The specific surface area of the mesoporous carbons with N-functional (MCN1) was 648.372 m2·g-1. The chemical composition and morphology of MCN1 were thoroughly examined, and a comprehensive analysis led to the identification of its formation mechanism. A noteworthy association has been identified between the adsorption efficacy and the chemical composition of MCN1. In the elimination of trace mercury in aqueous solutions over a broad pH range (pH 2-9), MCN1 demonstrates high effectiveness, approaching 100%. Adsorption kinetics and isotherm results indicate that a more accurate representation of Hg(II) adsorption on MCN1 is provided by pseudo-second-order kinetics and Freundlich models, with chemical adsorption being the dominant mechanism. This study further examined the removal of chlorogenic acid, a bioactive component, by MCN1. The findings imply that MCN1 has a noteworthy 80% efficacy in removing mercury from honeysuckle decoction while maintaining the purity of its medicinal ingredients, particularly chlorogenic acid. As a result, utilizing MCN1 for the adsorption of Hg(II) in honeysuckle decoction appears to be a reasonable approach.
Collapse
Affiliation(s)
- Qing He
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Kun Pang
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Lin Tian
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yiqian Ma
- Guizhou
Institute of Products Quality Inspection & Testing, Guiyang 550025, China
| | - Xiang Guo
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jianyong Zhang
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ming Yu
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
- State Key
Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Boyarskikh IG, Kostikova VA. Changes in Individual and Group Compositions of Polyphenols in Leaves of Lonicera caerulea subsp. altaica and Spiraea chamaedryfolia as Related to Chemical Element Contents in Soil and Plants on Ultra-alkaline Parent Rock Material. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:137-148. [PMID: 39128958 DOI: 10.1134/s0012496624701084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 08/13/2024]
Abstract
Using high-performance liquid chromatography (HPLC), the contents of main classes of biologically active polyphenols in leaf extracts were analyzed in the medicinal species Spiraea chamaedryfolia L. (Rosaceae) and Lonicera caerulea subsp. altaica L. (Caprifoliaceae). Their features were studied in relation to the macroelement and trace element contents in soil and phytomass in sites with sporadic occurrence of serpentinites in the Altai Mountains. A total of 16 polyphenolic compounds were identified for the first time in S. chamaedryfolia leaf extracts. Of these, three compounds were attributed to phenol carboxylic acids; ten, to flavonols; two, to flavones; and one was identified as a flavanone. In L. caerulea subsp. altaica, the analysis confirmed the polyphenolic composition measured earlier, including hydroxycinnamic acids, flavonols, and flavones, and identified an additional compound as a flavanone. Species-specific shifts in plant secondary metabolism were found to occur in response to specific edaphic properties and the accumulation of macroelements and trace elements in leaves of plants growing in an area with a natural geochemical anomaly.
Collapse
Affiliation(s)
- I G Boyarskikh
- Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - V A Kostikova
- Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Posadino AM, Giordo R, Ramli I, Zayed H, Nasrallah GK, Wehbe Z, Eid AH, Gürer ES, Kennedy JF, Aldahish AA, Calina D, Razis AFA, Modu B, Habtemariam S, Sharifi-Rad J, Pintus G, Cho WC. An updated overview of cyanidins for chemoprevention and cancer therapy. Biomed Pharmacother 2023; 163:114783. [PMID: 37121149 DOI: 10.1016/j.biopha.2023.114783] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-β-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Iman Ramli
- Département de Biologie Animale, Université des frères Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Eda Sönmez Gürer
- Sivas Cumhuriyet University, Faculty of Pharmacy, Department of Pharmacognosy, Sivas, Turkey
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| | - Afaf Ahmed Aldahish
- Department of Pharmacology & Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Asir, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Science, University of Maiduguri, 1069 Maiduguri, Borno state, Nigeria
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Shi Y, Jin HF, Jiao YH, Fei TH, Liu FM, Cao J. Enzyme activity- and chemometrics-assisted comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of honeysuckle. J Chromatogr A 2023; 1702:464090. [PMID: 37245356 DOI: 10.1016/j.chroma.2023.464090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
A unique and effective comprehensive two-dimensional liquid chromatography system was established and applied for the analysis of bioactive components in honeysuckle. Under the optimal conditions, Eclipse Plus C18 (2.1 × 100 mm, 3.5 μm, Agilent) and SB-C18 (4.6 × 50 mm, 1.8 μm, Agilent) columns were chosen for the first dimension (1D) and the second dimension (2D) separation. The optimal flow rates of 1D and 2D were 0.12 mL/min and 2.0 mL/min, respectively. Additionally, the proportion of organic solution was optimized to enhance orthogonality and integrated shift, and full gradient elution mode was adopted to improve chromatographic resolution. Furthermore, a total of 57 compounds were identified by molecular weight, retention time and collision cross-section value obtained from ion mobility mass spectrometry. Based on the data obtained from the principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis, the categories of honeysuckle in different regions were significantly different. Moreover, the half maximal inhibitory concentration values of most samples were between 0.37 and 1.55 mg/mL, and most samples were potent α-glucosidase inhibitors, which is better for the evaluation of the quality of drugs from two aspects of substance content and activity.
Collapse
Affiliation(s)
- Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan-Hua Jiao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting-Hong Fei
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Fang-Ming Liu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
6
|
Negreanu-Pirjol BS, Oprea OC, Negreanu-Pirjol T, Roncea FN, Prelipcean AM, Craciunescu O, Iosageanu A, Artem V, Ranca A, Motelica L, Lepadatu AC, Cosma M, Popoviciu DR. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants (Basel) 2023; 12:antiox12040951. [PMID: 37107325 PMCID: PMC10136089 DOI: 10.3390/antiox12040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu no. 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Andreea Iosageanu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Ludmila Motelica
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| | - Madalina Cosma
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| |
Collapse
|
7
|
Ishibashi M, Zaitsu K, Yoshikawa I, Otagaki S, Matsumoto S, Oikawa A, Shiratake K. High-throughput analysis of anthocyanins in horticultural crops using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS). HORTICULTURE RESEARCH 2023; 10:uhad039. [PMID: 37082655 PMCID: PMC10111199 DOI: 10.1093/hr/uhad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/23/2023] [Indexed: 05/03/2023]
Abstract
Plant secondary metabolites exhibit various horticultural traits. Simple and rapid analysis methods for evaluating these metabolites are in demand in breeding and consumer markets dealing with horticultural crops. We applied probe electrospray ionization (PESI) to evaluate secondary metabolite levels in horticultural crops. PESI does not require pre-treatment and separation of samples, which makes it suitable for high-throughput analysis. In this study, we targeted anthocyanins, one of the primary pigments in horticultural crops. Eighty-one anthocyanins were detected in approximately 3 minutes in the selected reaction-monitoring mode. Tandem mass spectrometry (MS/MS) could adequately distinguish between the fragments of anthocyanins and flavonols. Probe sampling, an intuitive method of sticking a probe directly to the sample, could detect anthocyanins qualitatively on a micro-area scale, such as achenes and receptacles in strawberry fruit. Our results suggest that PESI/MS/MS can be a powerful tool to characterize the profile of anthocyanins and compare their content among cultivars.
Collapse
Affiliation(s)
| | - Kei Zaitsu
- Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Ikue Yoshikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
- Faculty of Agriculture, Meijo University, Tenpaku, Nagoya, Aichi 468-8502, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | |
Collapse
|
8
|
Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules 2023; 28:molecules28062525. [PMID: 36985495 PMCID: PMC10057922 DOI: 10.3390/molecules28062525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Lonicera caerulea fruits are a rich source of vitamins, organic acids, and phenolic compounds, which are characterised by their health-promoting properties. The content of bioactive compounds in this fruit may vary depending on the cultivar and the harvest date. The fruits of the L. caerulea var. kamtschatica cultivars ‘Duet’ and ‘Aurora’ and the L. caerulea var. emphyllocalyx cultivars ‘Lori’, ‘Colin’ and ‘Willa’ were used in this study. L. emphyllocalyx fruit, especially the cultivar ‘Willa’, was characterised as having a higher acidity by an average of 29.96% compared to L. kamtschatica. The average ascorbic acid content of the L. kamtschatica fruit was 53.5 mg·100 g−1 f.w., while L. emphyllocalyx fruit had an average content that was 14.14% lower. The antioxidant activity (determined by DPPH, FRAP, and ABTS) varied according to the cultivar and the species of fruit analysed. The total polyphenol content differed significantly depending on the cultivar analysed; fruits of the L. emphyllocalyx cultivar ‘Willa’ were characterised by the lowest content of total polyphenols—416.94 mg GAE·100 g−1 f.w.—while the highest content of total polyphenols—747.85 GAE·100 g−1 f.w.—was found in the fruits of the L. emphyllocalyx cultivar ‘Lori’. Lonicera caerulea fruits contained 26 different phenolic compounds in their compositions, of which the highest content was characterised by cyanidin 3-O-glucoside (average: 347.37 mg·100 g−1). On the basis of this study, it appears that both L. kamtschatica fruits and L. emphyllocalyx fruits, especially of the cultivars ‘Lori’ and ‘Willa’, can be used in food processing.
Collapse
|
9
|
Optimization of Glycerol Extraction of Chlorogenic Acid from Honeysuckle by Response Surface Methodology. Processes (Basel) 2022. [DOI: 10.3390/pr11010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using honeysuckle as raw material, chlorogenic acid (CGA) was extracted with different alcohols. Based on the single-factor experiment design, the relationship between each parameter and the response value was explored by Box–Behnken method to optimize the process conditions. Best extraction results were obtained under the conditions of solid-to-liquid ratio of 1:20, the ultrasonic time of 40 min, the ultrasonic vibrator power of 240 w, and the CGA extraction rate of 2.98%. The experimental data show that the extraction rate of CGA is related to the length of the alcohol carbon chain and the number of hydroxyl groups in the extractant. The results from this work can provide technical basis for the safe and efficient production of CGA from honeysuckle.
Collapse
|
10
|
ÇİÇEK POLAT D, HÜRKUL MM. Evaluation of Lonicera etrusca var. etrusca Santi (Caprifoliaceae) Stem and Leaf in Terms of Anatomical Structures and Some Phenolic Compounds. Turk J Pharm Sci 2022; 19:636-641. [PMID: 36544285 PMCID: PMC9780581 DOI: 10.4274/tjps.galenos.2021.71636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives The genus Lonicera includes medicinally important plants. Two varieties of L. etrusca have been recorded in Türkiye. Anatomical structures and phytochemical contents are important in the diagnosis and identification of medicinal plants. This study included stem and leaf anatomy of L. etrusca var. etrusca and high performance liquid chromatography (HPLC) analysis of the methanol extracts obtained from these parts. Materials and Methods Plant materials were collected from Ankara. Methanol extracts were prepared from the stems and leaves by ultrasonic bath. The amounts of chlorogenic acid and caffeic acid that are major compounds in the stem and leaves, were determined by HPLC. For anatomical studies, specimens were preserved in 70% alcohol. Transverse and surface sections were prepared by hand. Detection of tissues was performed using Sartur reagent. Anatomical specimens were examined using a light microscope and microphotographed. Results In HPLC analysis, the highest amount of chlorogenic acid was determined in the leaf (1.148%), and the highest amount of caffeic acid (0.156%) was determined in the stem. In the anatomical analysis, it was observed that the stem was disc-shaped and hollow; pericycle is in a ring form, consists of fibre-like cells with thick walls and wide lumina; cork occurs adjoining pericyclic fibers; thin-walled pith cells containing dense druse crystals. The leaf lamina is bifacial in the transverse section; palisade and spongy parenchyma, both contain abundant starch grains; solitary druse crystals are sparse in the leaf mesophyll; the stomata were observed only on the lower surface with 3-5 subsidiary cells. With this study, L. etrusca var. etrusca has been clarified in terms of its anatomical structures and phenolic compounds. Conclusion The chemical contents and anatomical structures of the plant may contain important information that can be used in classification. This study may support in taxonomically classification for the L. etrusca var. etrusca.
Collapse
Affiliation(s)
- Derya ÇİÇEK POLAT
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Türkiye
| | - Muhammed Mesud HÜRKUL
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Türkiye,* Address for Correspondence: Phone: +90 312 203 31 11 E-mail:
| |
Collapse
|
11
|
Razem M, Ding Y, Morozova K, Mazzetto F, Scampicchio M. Analysis of Phenolic Compounds in Food by Coulometric Array Detector: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7498. [PMID: 36236596 PMCID: PMC9572987 DOI: 10.3390/s22197498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Phenolic compounds are an important group of organic molecules with high radical scavenging, antimicrobial, anti-inflammatory, and antioxidant properties. The emerging interest in phenolic compounds in food products has led to the development of various analytical techniques for their detection and characterization. Among them, the coulometric array detector is a sensitive, selective, and precise method for the analysis of polyphenols. This review discusses the principle of this method and recent advances in its development, as well as trends in its application for the analysis of phenolic compounds in food products, such as fruits, cereals, beverages, herbs, and spices.
Collapse
|
12
|
Viteri R, Giordano A, Montenegro G, Zacconi FC. Flavonoids and triterpenes isolated from Eucryphia cordifolia (Cunoniaceae). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
The Effective Analysis for Blue Honeysuckle Extract in the Treatment of Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9601020. [PMID: 36212967 PMCID: PMC9536902 DOI: 10.1155/2022/9601020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
To further determine how BHE affected the growth of HCC cells, the proportion of each cell cycle phase was explored in HCC cells by flow cytometry. Blue honeysuckle (Lonicera caerulea L.) is a species of bush that grows in eastern Russia. Blue honeysuckle extract (BHE) is rich in bioactive phytochemicals which can inhibit the proliferation of tumor cells. The mechanism underlying the anticancer activity of BHE in primary liver cancer is poorly understood. The purpose of this study was to evaluate the growth inhibition mechanism of bioactive substances from blue honeysuckle on hepatocellular carcinoma (HCC) cells and to explore its protein and gene targets. The compounds in BHE were determined by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Cell counting kit-8 (CCK8) assay was used to evaluate the effects of BHE on HCC cell proliferation, and flow cytometry assay (FCA) was used to determine how BHE arrested the proportion of each cell cycle phase in HCC cells. Western blot (WB) was performed to determine the expression of cell cycle-related proteins in HCC cells treated with different concentrations of BHE. The xenograft tumor animal models were established by HCC cell implantation. The results showed that cyanidin-3-o-glucoside and cyanidin-3-o-sophoroside which are the main biologically active components were detected in BHE. BHE is highly effective in inhibiting the proliferation of HCC cells by arresting the HCC cell cycle in the G2/M phase. BHE also downregulated the expression of conventional or classical dendritic cells-2 (cDC2) and cyclin B1 by promoting the expression of myelin transcription factor 1 (MyT1) in HCC cells. The weight and volume of xenografts were significantly decreased in the BHE treated groups when compared to the control group. BHE increased the expression of MyT1 in xenograft tissues. These findings showed that blue honeysuckle extract inhibits proliferation in vivo and in vitro by downregulating the expression of cDC2 and cyclin B1 and upregulating the expression of MyT1 in HCC cells.
Collapse
|
14
|
Dadan M, Grobelna A, Kalisz S, Witrowa-Rajchert D. The impact of ultrasound-assisted thawing on the bioactive components in juices obtained from blue honeysuckle (Lonicera caerulea L.). ULTRASONICS SONOCHEMISTRY 2022; 89:106156. [PMID: 36084570 PMCID: PMC9465023 DOI: 10.1016/j.ultsonch.2022.106156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 06/07/2023]
Abstract
Ultrasound (US) assisted thawing of blue honeysuckle berry was utilized in order to reduce the losses of bioactive components (ascorbic acid, anthocyanins, phenolic acids, iridoids, proanthocyanins) and increase the extraction efficiency during juice processing. It was analysed whether it was more beneficial to apply US (alone or with enzymatic treatment) to the frozen state, until reaching the cryoscopic temperature or thawed state. Both the US and enzymatic treatment significantly increased the extraction efficiency, extract content, acidity and the content of iridoids and chlorogenic acid in juices, especially if the US was applied to 50 °C. It was probably due to a higher extractivity by the greater damage of the tissue and detexturation. Enzymatic treatment due to long heating contributed to a higher degradation of anthocyanins, ascorbic acid and proanthocyanidins, which are more heat-sensitive. The results of the study mainly indicated the possibility of including ultrasound-assisted thawing in the fruit processing before pressing the juices. This may replace costly enzymatic treatment.
Collapse
Affiliation(s)
- Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Anna Grobelna
- Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Stanisław Kalisz
- Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
15
|
Ge L, Xie Q, Jiang Y, Xiao L, Wan H, Zhou B, Wu S, Tian J, Zeng X. Genus Lonicera: New drug discovery from traditional usage to modern chemical and pharmacological research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153889. [PMID: 35026509 DOI: 10.1016/j.phymed.2021.153889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lonicera Linn. belonging to the family Caprifoliaceae, the largest genus in the plant family, includes about more than 200 species, which are mainly distributed in northern Africa, North America, Europe and Asia. Some species of this genus have been usually used in traditional Chinese medicine as well as functional foods, cosmetics and other applications, such as L. japonica Thunb. Bioactive components and pharmacological activities of the genus Lonicera plants have received an increasing interest from the scientific community. Thus, a comprehensive and systematic review on their traditional usage in China, chemical components, and their pharmacological properties of their whole plants, bioactive extracts, and bioactive isolates including partial structure-activity relationships from the genus is indispensable. METHODS Information on genus Lonicera of this systematic electronic literature search was gathered via the published articles, patents, clinical trials website (https://clinicaltrials.gov/) and several online bibliographic databases (PubMed, Sci Finder, Research Gate, Science Direct, CNKI, Web of Science and Google Scholar). The following keywords were used for the online search: Lonicera, phytochemical composition, Lonicerae japonica, Lonicera review articles, bioactivities of Lonicera, anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, anti-diabetic, and clinical trials. This review paper consists of a total of 225 papers covering the Lonicera genus from 1800 to 2021, including research articles, reviews, patents, and book chapters. RESULTS In this review (1800s-2021), about 420 components from the genus of Lonicera Linn. including 87 flavonoids, 222 terpenoids, 51 organic acids, and other compounds, together with their pharmacological activities including anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, antidiabetic, anti-allergic, immunomodulatory effects, and toxicity were summarized. CONCLUSION The relationship is discussed among their traditional usage, their pharmacological properties, and their chemical components, which indicate the genus Lonicera have a large prospect in terms of new drug exploitation, especially in COVID-19 treatment.
Collapse
Affiliation(s)
- Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Yuanyuan Jiang
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Lingyun Xiao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Boping Zhou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Shipin Wu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong 518037, China.
| |
Collapse
|
16
|
Orlova N, Raeva-Bogoslovskaya E, Miroshnichenko A, Molkanova O. Some clonal micropropagation features of Lonicera caerulea L. cultivars in vitro. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224704005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lonicera caerulea L. is one of the early temperate berry crops. Honeysuckle is a deciduous shrub up to 2.5 m high with edible blue fruits rich in vitamins and polyphenols. The work is devoted to the improvement of in vitro propagation method of some Lonicera caerulea cultivars. The differences in regeneration and formation of axillary shoots were revealed depending on the mineral medium composition. The optimal mineral composition of the nutrient medium for clonal micropropagation of the studied genotypes was determined. Cultivation on of Quoirin and Lepoivre medium contributed to the maximum reproduction coefficient (14.3) and height of microshoots (5.1 cm). The optimal concentration of auxin at the rooting stage has been established. The highest percentage of rooted microshoots (91%) was noted on a nutrient medium with 0.3 mg/l indoleacetic acid.
Collapse
|
17
|
Liu X, Lv Y, Zheng M, Yin L, Wang X, Fu Y, Yu B, Li J. Polyphenols from blue honeysuckle (Lonicera caerulea var. edulis) berry inhibit lipid accumulation in adipocytes by suppressing lipogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114403. [PMID: 34245835 DOI: 10.1016/j.jep.2021.114403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blue honeysuckle (Lonicera caerulea var. edulis) berry has been used in folk medicine for the treatment of bacterial infections, gastrointestinal disorders, and metabolic diseases. There is evidence to support its pharmacological effects in improving diabetes, fatty liver, and obesity. AIM OF STUDY To investigate the effect of blue honeysuckle berry extract (BHBE) on lipid accumulation in adipocytes and the underlying mechanism. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) was applied to analyze the polyphenolic compounds in BHBE. 3T3-L1 cells were used to induce into adipocytes. Oil Red O staining combined with triglyceride (TG) content determination were carried out to evaluate intracellular lipid accumulation. Western blot was used to determine the expression of lipogenic enzymes and transcription factors. Real-time PCR was used to determine the expression of lipolytic enzymes and adipocyte markers. RESULTS The primary polyphenols in BHBE are flavonoids (mainly flavonols and anthocyanins). BHBE dose-dependently inhibited lipid accumulation in adipocytes by reducing the expression of fatty acid synthase (FAS) and increasing the phosphorylation level of acetyl-CoA carboxylase (ACC). Moreover, BHBE was found to promote the phosphorylation of AMP-activated protein kinase (AMPK) and further reduce the expression of lipogenic transcription factors (PPARγ, C/EBPα, and SREBP-1c), while the selective AMPK inhibitor attenuated the suppressive effect of BHBE on lipogenesis. In addition, BHBE increased the expression of beige adipocyte markers (Cd137 and Tmem26) and uncoupling protein 1 (UCP1) without affecting the expression of brown adipocyte markers (Ebf3 and Eva1). CONCLUSION BHBE inhibits lipid accumulation in adipocytes by suppressing lipogenesis via AMPK activation as well as by promoting beiging of adipocytes, which supports the anti-obesity potential of blue honeysuckle berry.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Mengyu Zheng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Li Yin
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Xiqing Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Yujie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China.
| |
Collapse
|
18
|
Dayar E, Cebova M, Lietava J, Panghyova E, Pechanova O. Antioxidant Effect of Lonicera caerulea L. in the Cardiovascular System of Obese Zucker Rats. Antioxidants (Basel) 2021; 10:antiox10081199. [PMID: 34439452 PMCID: PMC8388907 DOI: 10.3390/antiox10081199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Lonicera caerulea L. (Loni) represents a promising source of beneficial polyphenols with therapeutical potential in cardiovascular diseases. We aimed to study the effects of Loni and coenzyme Q10 (CoQ10) on selected cardiometabolic parameters and NO/ROS balance in obese Zucker rats. Male Zucker rats were divided into the control group and groups treated with CoQ10 (30 mg/kg/day) or Loni (5 g/kg/day) for 6 weeks. Blood pressure, body weight, heart weight, and plasma lipid profile were determined. NOS activity and protein expressions of eNOS, SOD, NADPH oxidase, and NF-kappa B were measured in the heart and aorta. Neither body weight nor blood pressure were significantly changed after six weeks of Loni or CoQ10 treatment. Both Loni and CoQ10 decreased the plasma LDL level. Moreover, Loni decreased the total cholesterol level. The total NOS activity did not change in the heart after the treatments. However, in the aorta, Loni treatment increased NOS activity and protein expression of SOD and decreased expressions of NADPH oxidase and NF-kappa B compared to both the control and CoQ10 groups. There were no changes in the eNOS protein expression within the groups. In conclusion, it seems that the antioxidant effect of Loni was responsible for both the decrease of plasma LDL and the total cholesterol levels and the increase of vascular NOS activity.
Collapse
Affiliation(s)
- Ezgi Dayar
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
| | - Martina Cebova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
| | - Jan Lietava
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
- 1st Department of Internal Medicine, Medical Faculty of Comenius University, 811 07 Bratislava, Slovakia
| | - Elena Panghyova
- Research Institute of Nutrition, 821 08 Bratislava, Slovakia;
| | - Olga Pechanova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
- Correspondence: ; Tel.: +421-(911)-938-910
| |
Collapse
|
19
|
Gao Y, Tian R, Liu H, Xue H, Zhang R, Han S, Ji L, Huang W, Zhan J, You Y. Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021; 62:9053-9075. [PMID: 34142875 DOI: 10.1080/10408398.2021.1939265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a surge burden worldwide due to its high prevalence, with complicated deterioration symptoms such as liver fibrosis and cancer. No effective drugs are available for NALFD so far. The rapid growth of clinical demand has prompted the treatment of NAFLD to become a research hotspot. Protocatechuic acid (PCA) is a natural secondary metabolite commonly found in fruits, vegetables, grains, and herbal medicine. It is also the major internal metabolites of anthocyanins and other polyphenols. In the present manuscript, food sources, metabolic absorption, and efficacy of PCA were summarized while analyzing its role in improving NAFLD, as well as the mechanism involved. The results indicated that PCA could ameliorate NAFLD by regulating glucose and lipid metabolism, oxidative stress and inflammation, gut microbiota and metabolites. It was proposed for the first time that PCA might reduce NAFLD by enhancing the energy consumption of brown adipose tissue (BAT). However, the PCA administration mode and dose for NAFLD remain inconclusive. Fresh insights into the specific molecular mechanisms are required, while clinical trials are essential in the future. This review provides new targets and reasoning for the clinical application of PCA in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Rongrong Tian
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Haiyue Liu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Ruizhe Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Suping Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Protocols for Adventitious Regeneration of Amelanchier alnifolia var. cusickii and Lonicera kamtschatica 'Jugana'. PLANTS 2021; 10:plants10061155. [PMID: 34204118 PMCID: PMC8228500 DOI: 10.3390/plants10061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/05/2022]
Abstract
The aim of this work was to assess the regeneration capacity of Amelanchier alnifolia var. cusickii and Lonicera kamtschatica cv. ‘Jugana’ from different types of explants under various hormonal treatments. The whole leaves, petioles, and internodal segments of in vitro plants were examined as explants. Several plant growth regulators (cytokinins and auxins) were evaluated for their ability to induce adventitious regeneration. Direct and indirect organogenesis was achieved under certain culture conditions in both species. The frequency of shoot regeneration was strongly dependent on concentrations of plant growth regulators in the induction media (L.kamtschatica ‘Jugana’) or concentrations of plant growth regulators in the induction media and type of explant (A. alnifolia var. cusickii). Results showed that leaves were not suitable explants for A. alnifolia var. cusickii. Both species were able to regenerate shoots from internodal segments and petioles. The highest induction of shoots was obtained on Murashige and Skoog (MS) medium enriched with 2 mg/L thidiazuron (TDZ) and 0.5 mg/L indole-3-butyric acid (IBA) for Amelanchier alnifolia and with 1 mg/L TDZ and 0.2 mg/L indole-3-acetic acid (IAA) for L. kamtschatica ‘Jugana’. Obtained adventitious shoots were further proliferated in order to investigate their multiplication capacity. The multiplication of shoots was successful in all cultivars, with the best results reported in A. alnifolia var. cusickii (7.07 shoots/explant on average).
Collapse
|
21
|
Szołtysik M, Kucharska AZ, Dąbrowska A, Zięba T, Bobak Ł, Chrzanowska J. Effect of Two Combined Functional Additives on Yoghurt Properties. Foods 2021; 10:1159. [PMID: 34064052 PMCID: PMC8224028 DOI: 10.3390/foods10061159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the research was the analysis of yoghurts enriched with blue honeysuckle berries dry polyphenolic extract and new preparation of resistant starch. The additives were introduced individually at concentration 0.1% (w/v) and in mixture at final concentration of 0.1 and 0.2% of both components. Yogurt microflora, pH, and its physicochemical and antioxidant properties were examined over 14 days of storage under refrigerated conditions. Studies showed that both substances can be successfully used in yoghurt production. Yoghurt microflora es. S. thermophilus and Lb. delbrueckii subsp. bulgaricus counts appeared to be higher in samples supplemented with these additives comparing to control yoghurt by 3-8%. More stimulating effect on their growth, especially on S. thermophilus, revealed resistant starch. Addition of this polysaccharide improved also the rheological properties of yogurts, which showed higher viscosity than samples produced without it. Addition of honeysuckle berries preparation significantly influenced the yogurts' color, giving them deep purple color, and their antioxidant potential. During storage, contents of anthocyanin and iridoid compounds were decreasing, but antioxidant activity in the products remained stable.
Collapse
Affiliation(s)
- Marek Szołtysik
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Anna Dąbrowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Józefa Chrzanowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| |
Collapse
|
22
|
Sainz Martinez A, Kornpointner C, Haselmair-Gosch C, Mikulic-Petkovsek M, Schröder K, Halbwirth H. Dynamic streamlined extraction of iridoids, anthocyanins and lipids from haskap berries. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Raudonė L, Liaudanskas M, Vilkickytė G, Kviklys D, Žvikas V, Viškelis J, Viškelis P. Phenolic Profiles, Antioxidant Activity and Phenotypic Characterization of Lonicera caerulea L. Berries, Cultivated in Lithuania. Antioxidants (Basel) 2021; 10:antiox10010115. [PMID: 33467507 PMCID: PMC7830503 DOI: 10.3390/antiox10010115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Lonicera caerulea L. is an early fruit-bearing plant that originates from harsh environments. Raw materials contain a body of different phenolic origin compounds that determine the multidirectional antioxidant and pharmacological activities. The aim of this study was to comprehensively evaluate the phenolic composition, antioxidant capacities, vegetative, pomological, and sensory properties and their interrelations of selected L. caerulea cultivars, namely ‘Amphora’, ‘Wojtek’, ‘Iga’, ’Leningradskij Velikan’, ‘Nimfa’, ‘Indigo Gem’, ‘Tundra’, ‘Tola’, and fruit powders. Combined chromatographic systems were applied for the qualitative and quantitative profiling of 23 constituents belonging to the classes of anthocyanins, flavonols, flavones, proanthocyanidins, and phenolic acids. The determined markers of phytochemical profiles were cyanidin-3-glucoside, rutin, chlorogenic, and 3,5-dicaffeoylquinic acid. Anthocyanins and the predominant compound, cyanidin-3-glucoside, were the determinants of antioxidant activity. Cultivars ‘Amphora’, ‘Indigo Gem’, and ‘Tundra’ contained the greatest total amounts of identified phenolic compounds. Phenotypic characterization revealed the superiority of cultivars ‘Wojtek’ and ’Tundra’ compared to other cultivars, although ’Wojtek’ had low phenolic content and antioxidant activity and ’Tundra’ got lower sensory evaluation scores. Coupling the results of phenotypic and phytochemical characterization, cultivar ‘Tundra’ could be suitable for commercial plantations.
Collapse
Affiliation(s)
- Lina Raudonė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
- Correspondence:
| | - Mindaugas Liaudanskas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
| | - Gabrielė Vilkickytė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
| | - Darius Kviklys
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno str. 30, Babtai, LT-54333 Kaunas, Lithuania; (D.K.); (J.V.); (P.V.)
- Department of Horticulture, Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Ullensvangvegen 1005, NO-5781 Lofthus, Norway
| | - Vaidotas Žvikas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
| | - Jonas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno str. 30, Babtai, LT-54333 Kaunas, Lithuania; (D.K.); (J.V.); (P.V.)
| | - Pranas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno str. 30, Babtai, LT-54333 Kaunas, Lithuania; (D.K.); (J.V.); (P.V.)
| |
Collapse
|
24
|
Sharma A, Lee HJ. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
An MY, Eo HJ, Son HJ, Geum NG, Park GH, Jeong JB. Anti‑inflammatory effects of leaf and branch extracts of honeyberry (Lonicera caerulea) on lipopolysaccharide‑stimulated RAW264.7 cells through ATF3 and Nrf2/HO‑1 activation. Mol Med Rep 2020; 22:5219-5230. [PMID: 33174016 PMCID: PMC7646977 DOI: 10.3892/mmr.2020.11638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Honeyberry (Lonicera caerulea) has long been used as a traditional medicine in China, Japan and northern Russia. Functional studies of honeyberry have mainly focused on the fruits, which have been reported to exert various pharmacological activities, including anti-inflammatory activity, with limited or no studies on the other parts of the plant, such as the leaves and branches. In the present study, the anti-inflammatory effects of extracts of the leaves (HBL), branches (HBB) and fruit (HBF) of honeyberry plant were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. HBL and HBB significantly inhibited the production of pro-inflammatory mediators in LPS-stimulated RAW264.7 cells, and the inhibitory effects of HBL and HBB were stronger than those of HBF. HBL and HBB blocked the nuclear accumulation of p65 independently of IκB-α. HBL did not inhibit the phosphorylation of ERK1/2 or p38; however, HBB effectively inhibited the phosphorylation of p38 but not ERK1/2. HBL and HBB increased the expression of heme oxygenase-1 (HO-1) protein by inducing the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) through the activation of the reactive oxygen species (ROS)/p38 pathway; the reduction in inducible nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) expression by HBL and HBB was inhibited by HO-1 knockdown. In addition, HBL and HBB increased the expression of activating transcription factor-3 (ATF3), and the reduction in iNOS and IL-1β expression by HBL and HBB was inhibited by ATF3 knockdown. Collectively, HBL and HBB inhibited LPS-induced nuclear factor-κB activation by blocking the nuclear accumulation of p65, increasing HO-1 expression through activation of the ROS/p38/Nrf2 pathway, and increasing ATF3 expression. Furthermore, HBB inhibited LPS-induced p38 phosphorylation. These findings suggest that HBL and HBB may have great potential as natural products for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Mi-Yun An
- Department of Medicinal Plant Resources, Andong National University, Andong, Gyeongsangbuk 36729, Republic of Korea
| | - Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Gyeongsangbuk 36040, Republic of Korea
| | - Ho Jun Son
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Gyeongsangbuk 36040, Republic of Korea
| | - Na Gyeong Geum
- Department of Medicinal Plant Resources, Andong National University, Andong, Gyeongsangbuk 36729, Republic of Korea
| | - Gwang Hun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Gyeongsangbuk 36040, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, Gyeongsangbuk 36729, Republic of Korea
| |
Collapse
|
26
|
Boyarskih IG, Syso AI, Siromlya TI. Variability of Chemical Elements and Biologically Active Polyphenols in Lonicera caerulea subsp. Altaica (Caprifoliaceae) Plant Organs Along an Altitudinal Gradient. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425519060039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phytochemical characteristic analysis of a group of 30 haskap berry genotypes was carried out bearing in mind the concern for the consumption of food with high nutraceutical value that helps maintain good health. Phytochemical fruit composition and antioxidant activity were assessed by the Folin–Ciocalteau, spectrophotometric, DPPH (1,1-diphenyl-2-picrylhydrazyl) as well as ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method. Evaluation of antioxidant activity was referred to as the Trolox equivalent. The observed differences in the content of phenolics, flavonoids, vitamin C and antioxidant activity allowed us to select genotypes which, due to the high level of the analyzed compounds, are particularly recommended in everyone’s diet. In addition, the analysis of the prospects of increasing the analyzed phytochemical properties, estimated by parameters such as heritability and genetic progress, indicates the effectiveness of breeding in relation to each of the analyzed traits. The results of the presented research can be used in the implementation of future breeding programs for this valuable species.
Collapse
|
28
|
Minami M, Takase H, Nakamura M, Makino T. Methanol extract of Lonicera caerulea var. emphyllocalyx fruit has anti-motility and anti-biofilm activity against enteropathogenic Escherichia coli. Drug Discov Ther 2020; 13:335-342. [PMID: 31956232 DOI: 10.5582/ddt.2019.01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Foodborne diseases have become a worldwide problem that threatens public health and welfare. Enteropathogenic Escherichia coli (EPEC) is one of major pathogens of moderate to severe diarrhea. The increased prevalence of EPEC strains that produce extended spectrum β-lactamase (ESBL) has deepened the problem. The fruit of Lonicera caerulea var. emphyllocalyx (LCE) has been used as a traditional food preservative and medicine in northern temperate zones such as Hokkaido Island, Japan. In this study, we investigated the antibacterial effect of LCE fruit extract (LCEE) against EPEC. The antibacterial activities of LCEE were examined by bacterial growth, time-kill curve, soft-agar motility, electron microscopy, and 96 well-microplate biofilm assays. We also investigated the bacterial mRNA expression of biofilm-associated genes (fliC, csgA, and fimA) by quantitative real-time PCR assays. LCEE was found to suppress the growth, time-kill curve, and spread of EPEC. It also reduced the biofilm formation in a dose-dependent manner. Morphological analysis using transmission and scanning electron microscopy revealed that LCEE diminished the function of flagella resulting in reduced motility and biofilm formation. The mRNA expression of all three biofilm associated genes was downregulated under LCEE treatment. Extracts of the fruit of LCE inhibit the motility and biofilm formation of EPEC as a result of the inhibition of flagella development and function. We propose LCEE as a therapeutic candidate for the effective therapy of EPEC-associated infectious diseases.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japann
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
29
|
De Silva AKH, Rupasinghe HV. Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Gołba M, Sokół-Łętowska A, Kucharska AZ. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020; 25:E749. [PMID: 32050498 PMCID: PMC7037556 DOI: 10.3390/molecules25030749] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Lonicera caerulea L., also known as haskap or honeysuckle berry, is a fruit commonly planted in eastern Europe, Canada and Asia. The fruit was registered as a traditional food from a third country under European Union regulations only on December 2018. It is resistant to cold, pests, various soil acidities and diseases. However, its attractiveness is associated mostly with its health properties. The fruit shows anticancer, anti-inflammatory, and antioxidant activity-important factors in improving health. These features result from the diverse content of phytochemicals in honeysuckle berries with high concentrations of phytocompounds, mainly hydroxycinnamic acids, hydroxybenzoic acids, flavanols, flavones, isoflavones, flavonols, flavanones and anthocyanins but also iridoids, present in the fruit in exceptional amounts. The content and health properties of the fruit were identified to be dependent on cultivar, genotype and the place of harvesting. Great potential benefits of this nutritious food are its ability to minimize the negative effects of UV radiation, diabetes mellitus and neurodegenerative diseases, and to exert hepato- and cardioprotective activity.
Collapse
Affiliation(s)
- Marta Gołba
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.S.Ł.); (A.Z.K.)
| | | | | |
Collapse
|
31
|
Anton D, Koskar J, Raudsepp P, Meremäe K, Kaart T, Püssa T, Roasto M. Antimicrobial and Antioxidative Effects of Plant Powders in Raw and Cooked Minced Pork. Foods 2019; 8:foods8120661. [PMID: 31835429 PMCID: PMC6963448 DOI: 10.3390/foods8120661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022] Open
Abstract
It is a challenge for scientists to find new plant-based food constituents simultaneously possessing antimicrobial and antioxidative properties to prolong the shelf life of meat products. In this study, various plant powders and their blends were added to minced pork to carry out a complex study of their effect on sensory characteristics, microbial growth, and lipid oxidation of the meat in raw and cooked forms during storage. Microbiological shelf life parameters were evaluated by determining the total counts of microorganisms, yeasts, and molds. The growth potential of Listeria monocytogenes was estimated by challenge testing. The impact on lipid oxidation processes was assessed using thiobarbituric acid reactive substances (TBARS) and high performance liquid chromatography (HPLC) methods. The results showed that the blend of rhubarb petioles and tomato powder added a pleasant color and a combined taste to the product, similar to the taste of salt. In raw samples, considerable microbial growth inhibition was achieved with rhubarb petioles, tomato, and their mixture. Nine treatments of cooked samples had a stronger inhibitory effect on microbial growth compared to control treatments. Among all plant powders, tomato was the most effective inhibitor of yeast and mold growth. However, the challenge test revealed that L. monocytogenes growth in cooked samples was not inhibited during shelf life. In raw samples, rhubarb roots combined with blackcurrant or chokeberry berries effectively inhibited lipid oxidation, and in cooked samples, rhubarb petioles showed a similar effect. In conclusion, it was found that powdered plant materials are well suited for use as antimicrobial and antioxidative agents in minced meat products.
Collapse
Affiliation(s)
- Dea Anton
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (K.M.); (T.P.); (M.R.)
- Correspondence:
| | - Julia Koskar
- Estonian Veterinary and Food Laboratory, Kreutzwaldi 30, 51006 Tartu, Estonia;
| | - Piret Raudsepp
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (K.M.); (T.P.); (M.R.)
| | - Kadrin Meremäe
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (K.M.); (T.P.); (M.R.)
| | - Tanel Kaart
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia;
| | - Tõnu Püssa
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (K.M.); (T.P.); (M.R.)
| | - Mati Roasto
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (K.M.); (T.P.); (M.R.)
| |
Collapse
|
32
|
Liu J, Yong H, Liu Y, Qin Y, Kan J, Liu J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100417] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Grobelna A, Kalisz S, Kieliszek M. The Effect of the Addition of Blue Honeysuckle Berry Juice to Apple Juice on the Selected Quality Characteristics, Anthocyanin Stability, and Antioxidant Properties. Biomolecules 2019; 9:biom9110744. [PMID: 31744240 PMCID: PMC6920767 DOI: 10.3390/biom9110744] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/19/2023] Open
Abstract
Apple juice is rich in phenolic compounds that are important as natural antioxidants. In turn, blue honeysuckle berry juice is a valuable source of bioactive ingredients and can be an interesting and beneficial supplement to fruit juices. The aim of this study was to examine the physicochemical and sensory properties of the newly designed mixture of apple juice and blue honeysuckle berry juice. The addition of blue honeysuckle berry juice to apple juice had a significant effect on the content of anthocyanin and vitamin C in the newly designed fruit juices. After production, the content of anthocyanins and polyphenols in the blue honeysuckle berry juice was high (595.39 and 767.88 mg/100 mL, respectively). As the concentration of blue honeysuckle berry juice added to apple juice was increased, the polyphenol content also increased. The juices analyzed after 4 months of storage were lighter and showed a less intense red color than the juices analyzed directly after production. Antioxidant activity (ABTS assay) in the apple juice mixed with 10% blueberry juice was almost 3 times higher than the pure apple juice after 3 months of storage; the addition of 30% blueberry juice significantly increased the antioxidant activity of the apple juice. Thus, the results of this research have expanded the existing knowledge about the health and sensory properties of apple juice mixed with blue honeysuckle berry juice. These findings can be utilized in further research aiming at the development of new products that can meet consumer expectations.
Collapse
Affiliation(s)
- Anna Grobelna
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
| | - Stanisław Kalisz
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
- Correspondence: (S.K.); (M.K.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
- Correspondence: (S.K.); (M.K.)
| |
Collapse
|
34
|
Šic Žlabur J, Colnar D, Voća S, Lorenzo JM, Munekata PES, Barba FJ, Dobričević N, Galić A, Dujmić F, Pliestić S, Brnčić M. Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). ULTRASONICS SONOCHEMISTRY 2019; 56:372-377. [PMID: 31101275 DOI: 10.1016/j.ultsonch.2019.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Honeyberries are rich in various nutrients (eg. minerals, and vitamins) and bioactive compounds (eg. polyphenols). The aim of the study was to evaluate the impact of ultrasound (USN) pre-treatment (100% power at 37 kHz) at 40 °C for 3 min and drying techniques (conduction or vacuum) on nutritional composition and bioactive compounds of honeyberry fruits. The evaluation of dried barriers revealed that both USN pre-treatment and drying techniques affected the composition of the final product. The highest vitamin C content (1.067-1.187 mg 100 g-1 DM) was found in fruit samples pre-treated by USN, regardless of the drying technology used. The highest total phenol (2.445 mg GAE 100 g-1 DM), total flavonoid (0.939 mg GAE 100 g-1 DM), total non-flavonoid (1.506 mg GAE 100 g-1 DM) and anthocyanin content (2.334 mg kg-1 FW) were obtained in fruits after applying USN pre-treatment and vacuum dried at 40 °C.
Collapse
Affiliation(s)
- Jana Šic Žlabur
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Dario Colnar
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain.
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Francisco J Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Nadica Dobričević
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Ante Galić
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia.
| | - Filip Dujmić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva ulica 6, 10000 Zagreb, Croatia
| | - Stjepan Pliestić
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Mladen Brnčić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva ulica 6, 10000 Zagreb, Croatia.
| |
Collapse
|
35
|
Cehula M, Juríková T, Žiarovská J, Mlček J, Kyseľ M. Evaluation of genetic diversity of edible honeysuckle monitored by RAPD in relation to bioactive substances. POTRAVINARSTVO 2019. [DOI: 10.5219/1139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was clarifying the relation between genetic diversity of edible honeysuckle (Lonicera kamtschatica) and the major group of biologically active substances as total polyphenols content (TPC) including antioxidant activity (AO). Fruits of edible honeysuckle becomes more and more popular, especially in Europe. The current status of research on polyphenolic compounds in the berries of edible honeysuckle and their biological effects, including recommended utilization, are reviewed.The biological material including 14 cultivars of the edible honeysuckle (´Zoluška´, ´Amfora´, ´Pruhonický 44´, ´Vasilijevsky´, ´Moskovskaja´, ´Vojtek´, ´Sinoglaska´, ´Altaj´, ´Lipnická´, ´Kamčadalka´, ´Sinaja Ptica´, ´Fialka´, ´Modrý Triumf´, and ´Leningradský velikán´) originated from Czech republic (Žabcice near Brno). The content of TPC and AO were determined by location and its soil-climatic conditions and these environmental circumstances determines the RAPD profiles of analysed honeysuckle acessions, too. DPPH method was used to analyze AO and Folin-Ciocalteu method was used to determine TPC. The results of experiment showed that the highest value of AO was determined at the cultivars ´Zoluška´ (81.04 mg.L-1) and the lowest was measured in ´Kamčadalka´ (54.122 mg.L-1). On the contrary, the highest content of TPC was determined at the cultivar ´Kamčadalka´ (51.09 mg.L-1) and the lowest value was measured at the cultivar ´Pruhonický 44´ (21.65 mg.L-1). Phylogenetic trees were similar in genetic distance. The content of TPC and AO were not statistically significant in relation to cultivar. The analyzed cultivars of the edible honeysuckle were separated in 4 clusters according to used primers. In both gel images, the amplicon size ranged from 100 to 1,500 bp. We found that genetic diversity was partially related to content of total polyphenolic substances and antioxidant activity. Based on phylogenetic trees we have stated that variety ´Lipnická´, ´Sinoglaska´, ´Altaj´, ´Leningradský velikán´, ´Modrý Triumf´, ´Sinaja Ptica´ and ´Kamčadalka´ were grouped in the similar cluster. The highest genetic distance was determined at the variety ´Vasilijevskaja´ and ´Amfora´. In the same way, there were variety ´Vojtek´, ´Fialka´ and ´Zoluška´.
Collapse
|
36
|
Sharma A, Kim JW, Ku SK, Choi JS, Lee HJ. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse. Nutr Res Pract 2019; 13:367-376. [PMID: 31583055 PMCID: PMC6760985 DOI: 10.4162/nrp.2019.13.5.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/02/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND/OBJECTIVE The blue honeysuckle berry (Lonicera caerulea var. edulis L.) is a small deciduous shrub belonging to the Caprifoliaceae family that is native to Russia, China, Japan, and Korea. The berry of this shrub is edible, sweet and juicy and is commonly known as the blue honeyberry (BHB). This study examined the anti-diabetic potential of BHB on high-fat-diet-induced mild diabetic mice. The hypoglycemic, and nephroprotective effects of the 12-week oral administration of blue honeyberry extract were analyzed. MATERIALS/METHODS The hypoglycemic effects were based on the observed changes in insulin, blood glucose, and glycated hemoglobin (HbA1c). Furthermore, the changes in the weight of the pancreas, including its histopathology and immunohistochemical investigation were also performed. Moreover, the nephroprotective effects were analyzed by observing the changes in kidney weight, its histopathology, blood urea nitrogen (BUN), and serum creatinine levels. RESULTS The results showed that the high-fat diet (HFD)-induced control mice showed a noticeable increase in blood glucose, insulin, HbA1c, BUN, and creatinine levels. Furthermore, growth was observed in lipid droplet deposition related to the degenerative lesions in the vacuolated renal tubules with the evident enlargement and hyperplasia of the pancreatic islets. In addition, in the endocrine pancreas, there was an increase in the insulin-and glucagon-producing cells, as well as in the insulin/glucagon cell ratios. On the other hand, compared to the HFD-treated mice group, all these diabetic and related complications were ameliorated significantly in a dose-dependent manner after 84 days of the continuous oral administration of BHBe at 400, 200 and 100 mg/kg, and a dramatic resettlement in the hepatic glucose-regulating enzyme activities was observed. CONCLUSIONS By assessing the key parameters for T2DM, the present study showed that the BHBe could act as a potential herbal agent to cure diabetes (type II) and associated ailments in HFD-induced mice.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Joo Wan Kim
- Aribio Co. Ltd., #2-301, Pangyo Seven Venture Valley, Gyeonggi 13487, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongbuk 38610, Republic of Korea
| | - Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
37
|
Becker R, Szakiel A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Minami M, Takase H, Nakamura M, Makino T. Methanol extract of Lonicera caerulea var. emphyllocalyx fruit has antibacterial and anti-biofilm activity against Streptococcus pyogenes in vitro. Biosci Trends 2019; 13:145-151. [PMID: 30996209 DOI: 10.5582/bst.2019.01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Streptococcus pyogenes causes several infectious diseases such as tonsillitis, cellulitis, and streptococcal toxic shock syndrome. As antibiotics are used for the general treatment of S. pyogenes infection, cases of treatment failure due to drug-resistant bacteria have increased. Lonicera caerulea var. emphyllocalyx (LCE) has been used as a folk medicine in northern Japan (Hokkaido). In this study, we investigated the antibacterial effect of methanol extracts of the fruit, stem, and leaf of LCE (LCEEs) against S. pyogenes using disk diffusion assay. As LCEE (fruit) had the strongest antibacterial activity among the three LCEEs, we focused on functional analysis of antibacterial effects of LCEE (fruit). LCEE (fruit) suppressed the growth of S. pyogenes in a dose-dependent manner. Morphological analysis by transmission electron microscopy demonstrated that LCEE (fruit) damaged the shape of S. pyogenes. Microplate and confocal laser microscopy analysis showed that biofilm formation was also suppressed by LCEE (fruit) in a dose-dependent manner. To further evaluate the surface structure of these biofilms, we performed hydrophobic analysis, which demonstrated that LCEE (fruit) reduced the hydrophobicity of the bacterial surface structure. Our data demonstrated that LCEE (fruit) had anti-bacterial and anti-biofilm effects on S. pyogenes in vitro, suggesting that the direct anti-bacterial effects of the LCEE (fruit) may be useful for treatment of local S. pyogenes infection.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Graduate School of Medical Sciences, Nagoya City University
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University
| | | | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
39
|
Effect of Lonicera caerulea var. emphyllocalyx Extracts on Murine Streptococcus pyogenes Infection by Modulating Immune System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1797930. [PMID: 30881983 PMCID: PMC6383546 DOI: 10.1155/2019/1797930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022]
Abstract
Streptococcus pyogenes (S. pyogenes) causes several infectious diseases such as tonsillitis, cellulitis, and streptococcal toxic shock syndrome. The general treatment of S. pyogenes infection is by using β-lactam antibiotics; however, the cases of treatment failure were increasing as serious problems. Lonicera caerulea var. emphyllocalyx (LCE) has been used in the folk medicine in the northern part of Japan, the northern part of China, Korea, and Russia. In this study, we investigated the efficacy of three parts (fruit, stem, and leaf) of Lonicera caerulea var. emphyllocalyx extract (LCEEs) against murine S. pyogenes infection. Oral administration of LCEEs increased the mortality in murine model, and the extracts of its stems and leaves were more effective than the fruit extract significantly. Murine splenocytes and mesenteric lymph nodal cells treated with LCEEs suppressed the excess production of inflammatory cytokine such as TNF-α in comparison to those from untreated cells. LCEEs stimulated the differentiation of pluripotent hematopoietic stem cells in those murine lymph nodal cells. It also activated the proliferative response of murine lymph nodal cells. We also found that the stem and leaf extracts seemed to be more effective than the fruit extract in those phenomena. The concentration of lignins in LCEE prepared from the stems was larger than that from leaves, and that was larger than that from the fruits. Our data suggest that LCE, especially the stems and the leaves, may be useful for the treatment of S. pyogenes infection.
Collapse
|
40
|
Yang H, Wu D, Guo D, Lu J. The aromatic volatile composition of Lonicera edulis
wines produced with three different strains of Saccharomyces cerevisiae. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hua Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Dejun Guo
- School of Food Engineering; Qinzhou University; 12 Binhai Road Qinzhou 535000 China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| |
Collapse
|
41
|
Suvanto J, Nohynek L, Seppänen-Laakso T, Rischer H, Salminen JP, Puupponen-Pimiä R. Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species. PLANTA 2017; 246:227-241. [PMID: 28382519 PMCID: PMC5522657 DOI: 10.1007/s00425-017-2686-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/21/2017] [Indexed: 05/11/2023]
Abstract
The polyphenol profiles of 18 cell cultures from 12 plant species were screened. The detected polyphenol fingerprints were diverse and differed from polyphenol profiles typically found in corresponding plant species. Cell cultures originating from 12 different plant species growing or grown in the Nordic countries were screened for their ability to synthesize polyphenols to assess their suitability for future studies and applications. The focus was on plant families Rosaceae and Ericaceae. On average, the Rosaceae cultures were the most efficient to produce hydrolysable tannins and the Ericaceae cultures were the most efficient to produce proanthocyanidins. This is in line with the general trend of polyphenols found in Rosaceae and Ericaceae leaves and fruits, even though several individual cell cultures differed from natural plants in their polyphenolic composition. Overall, several of the studied cell cultures exhibited capability in producing a large variety of polyphenols, including tannins with a high molecular weight, thus also showing promise for further studies concerning, for example, the accumulation of specific polyphenols or biosynthesis of polyphenols in the cell cultures.
Collapse
Affiliation(s)
- Jussi Suvanto
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014, Turku, Finland.
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., 02044, Espoo, Finland
| | | | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., 02044, Espoo, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014, Turku, Finland
| | | |
Collapse
|
42
|
Zha L, Liu S, Liu J, Jiang C, Yu S, Yuan Y, Yang J, Wang Y, Huang L. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:1178. [PMID: 28740500 PMCID: PMC5502268 DOI: 10.3389/fpls.2017.01178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/20/2017] [Indexed: 05/10/2023]
Abstract
The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5'-UTR of phenylalanine ammonia-lyase 2 (PAL2). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5'-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica.
Collapse
Affiliation(s)
- Liangping Zha
- College of Pharmacy, Anhui University of Chinese MedicineHefei, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese MedicineHefei, China
| | - Shuang Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
- School of Chinese Materia Medica, Beijing University of Chinese MedicineBeijing, China
| | - Juan Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Chao Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Shulin Yu
- College of Pharmacy, Anhui University of Chinese MedicineHefei, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Yuan Yuan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Yaolong Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| |
Collapse
|
43
|
Antioxidant Activity of Yichun Blue Honeysuckle (YBHS) Berry Counteracts CCl₄-Induced Toxicity in Liver Injury Model of Mice. Antioxidants (Basel) 2017; 6:antiox6030050. [PMID: 28665311 PMCID: PMC5618078 DOI: 10.3390/antiox6030050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/21/2022] Open
Abstract
Yichun Blue Honeysuckle (YBHS) is reported to have a broad range of health benefits including protection against a number of chronic diseases. The objective of our study was to determine whether YBHS exhibits antioxidant activity, and if so, determine how it provides protection against oxidative stress. Eight-week old mice (25 male and 25 female) were randomized into five groups (n = 10 per group). YBHS extract (at 6.25%, 12.5%, or 25%) was administrated via intra-gastric tube to mice at 0.1 mL/10 g body weight once daily for 7 days. On the 8th day, all animals except for the controls received 250 mg/kg of CCl4 through an intra-gastric tube. The animals were sacrificed 6 h after CCl4 administration. Liver samples obtained from these mice were analyzed for the levels of Thiobarbituric Acid Reactive Substances (TBARS) and glutathione and the activities of Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPx), using biochemical assay kits. Our results showed that YBHS indeed reduces lipid peroxidation, suggesting that YBHS decreases the Reactive Oxygen Species (ROS) levels. We also found that YBHS activated the endogenous antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase and its co-enzyme glutathione reductase. In addition, we showed that glutathione levels were increased by YBHS treatment. Furthermore, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that YBHS has potent free radical scavenging activity. Based on the results from our study, we conclude that YBHS scavenges ROS by enhancing the activity of the endogenous antioxidant defense system activity for conferring liver protective effects.
Collapse
|
44
|
Kucharska AZ, Sokół-Łętowska A, Oszmiański J, Piórecki N, Fecka I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017; 22:molecules22030405. [PMID: 28273885 PMCID: PMC6155291 DOI: 10.3390/molecules22030405] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
Iridoid and polyphenol profiles of 30 different honeysuckle berry cultivars and genotypes were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-qTOF-MS/MS) in positive and negative ion modes and quantified by HPLC-PDA. The 50 identified compounds included 15 iridoids, 6 anthocyanins, 9 flavonols, 2 flavanonols (dihydroflavonols), 5 flavones, 6 flavan-3-ols, and 7 phenolic acids. 8-epi-Loganic acid, pentosyl-loganic acid, taxifolin 7-O-dihexoside, and taxifolin 7-O-hexoside were identified in honeysuckle berries for the first time. Iridoids and anthocyanins were the major groups of bioactive compounds of honeysuckle constituents. The total content of quantified iridoids and anthocyanins was between 128.42 mg/100 g fresh weight (fw) (‘Dlinnoplodnaya’) and 372 mg/100 g fw (‘Kuvshinovidnaya’) and between 150.04 mg/100 g fw (‘Karina’) and 653.95 mg/100 g fw (‘Amur’), respectively. Among iridoids, loganic acid was the dominant compound, and it represented between 22% and 73% of the total amount of quantified iridoids in honeysuckle berry. A very strong correlation was observed between the antioxidant potential and the quantity of anthocyanins. High content of iridoids in honeysuckle berries can complement antioxidant properties of phenolic compounds.
Collapse
Affiliation(s)
- Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland.
- University of Rzeszów, Towarnickiego 3, 35-959 Rzeszów, Poland.
| | - Izabela Fecka
- Department of Pharmacognosy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|
45
|
Black Crowberry (Empetrum nigrum L.) Flavonoids and Their Health Promoting Activity. Molecules 2016; 21:molecules21121685. [PMID: 27941619 PMCID: PMC6272966 DOI: 10.3390/molecules21121685] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
Nowadays, much research attention is focused on underutilized berry crops due to the high antioxidant activity of fruits. Black crowberry (Empetrum nigrum L.) represents an important source of flavonols (quercetin, rutin, myricetin, naringenin, naringin, morin, and kaempferol) and anthocyanins. The fruit components could be utilised as natural colourants or as a part of functional foods and, because of the high antioxidant activity, the berries of black crowberry can be used in the treatment of diseases accompanied with inflammation, or as an effective antibacterial and antifungal remedy. Moreover, the reduction of lipid accumulation and total cholesterol as well as an improvement of postprandial hyperglycaemia have been proven. This review summarizes for the first time the main antioxidants (flavonoids) of black crowberry fruits, with a focus on their health promoting activity.
Collapse
|
46
|
Kula M, Głód D, Krauze-Baranowska M. Application of on-line and off-line heart-cutting LC in determination of secondary metabolites from the flowers of Lonicera caerulea cultivar varieties. J Pharm Biomed Anal 2016; 131:316-326. [DOI: 10.1016/j.jpba.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/29/2016] [Accepted: 09/04/2016] [Indexed: 11/26/2022]
|
47
|
Park SI, Lee YJ, Choi SH, Park SJ, Song CH, Ku SK. Therapeutic Effects of Blue Honeysuckle on Lesions of Hyperthyroidism in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1441-1456. [PMID: 27785940 DOI: 10.1142/s0192415x16500804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyperthyroidism is a hypermetabolic syndrome characterized by an overproduction of thyroid hormones, which enhances the hormone-induced oxidative stress responsible for some complications in the liver, heart and muscle. Blue honeysuckle (BH) is an edible berry, rich in polyphenols, especially flavonoids or anthocyanins, known as strong antioxidants. The chemo-protective activities of the berry have been connected to the improvement of symptoms in cancer, diabetes mellitus, tumor or cardiovascular diseases. Therefore, the therapeutic effects of BH were examined in hyperthyroidism rat model. The hyperthyroidism was induced by injection with levothyroxine (LT4), and the model was treated with distilled water (LT4 control), propylthiouracil (PTU) or BH at 3 dosages of 500, 250 and 125[Formula: see text]mg/kg. The treatment was performed once a day for 15 days. Compared to LT4 control, the oral administration of BH dose-dependently ameliorated the hyperthyroidism, reducing thyroid hormones and increasing thyroid stimulating hormones. These effects were accompanied by improvement of body weight loss and atrophy in the thyroid gland, liver and epididymal fat pads. BH treatments also reduced the levels of hepatic enzymes (AST and ALT), which suggests BH exerts protective effects on hepatocytes. BH might also be involved in the augmentation of the anti-oxidant activities, supported by increased endogenous antioxidant (glutathione). In addition, the histopathological analyses revealed the beneficial effects of BH on the atrophic changes and cellular injuries in the thyroid gland, liver and epididymal fat pads. The therapeutic potentials of BH were either similar or more effective than PTU. These results provide valuable information that will guide more detailed studies to use the BH as a complementary and alternative medicine.
Collapse
Affiliation(s)
- Sang-In Park
- * Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Republic of Korea
| | - Young Joon Lee
- † Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Republic of Korea
| | - Seong Hun Choi
- * Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Republic of Korea
| | - Soo Jin Park
- * Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Republic of Korea
| | - Chang-Hyun Song
- * Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Republic of Korea
| | - Sae-Kwang Ku
- * Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Republic of Korea
| |
Collapse
|
48
|
Antioxidant capacities and anthocyanin characteristics of the black–red wild berries obtained in Northeast China. Food Chem 2016; 204:150-158. [DOI: 10.1016/j.foodchem.2016.02.122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022]
|
49
|
Wang Y, Li B, Ma Y, Wang X, Zhang X, Zhang Q, Meng X. Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in BRL-3A cells: Oxidative stress, energy metabolism, hepatic function. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
50
|
Khattab R, Brooks MSL, Ghanem A. Phenolic Analyses of Haskap Berries (Lonicera caerulea L.): Spectrophotometry Versus High Performance Liquid Chromatography. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1084316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rabie Khattab
- Food Science Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marianne Su-Ling Brooks
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amyl Ghanem
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|