1
|
Manthrirathna MATP, Dangerfield EM, Ishizuka S, Woods A, Luong BS, Yamasaki S, Timmer MSM, Stocker BL. Water-soluble trehalose glycolipids show superior Mincle binding and signaling but impaired phagocytosis and IL-1β production. Front Mol Biosci 2022; 9:1015210. [PMID: 36504717 PMCID: PMC9729344 DOI: 10.3389/fmolb.2022.1015210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
The tremendous potential of trehalose glycolipids as vaccine adjuvants has incentivized the study of how the structures of these ligands relate to their Mincle-mediated agonist activities. Despite this, structure-activity work in the field has been largely empirical, and less is known about how Mincle-independent pathways might be affected by different trehalose glycolipids, and whether Mincle binding by itself can serve as a proxy for adjuvanticity. There is also much demand for more water-soluble Mincle ligands. To address this need, we prepared polyethylene glycol modified trehalose glycolipids (PEG-TGLs) with enhanced water solubility and strong murine Mincle (mMincle) binding and signaling. However, only modest cytokine and chemokine responses were observed upon the treatment of GM-CSF treated bone-marrow cells with the PEG-TGLs. Notability, no IL-1β was observed. Using RNA-Seq analysis and a representative PEG-TGL, we determined that the more water-soluble adducts were less able to activate phagocytic pathways, and hence, failed to induce IL-1β production. Taken together, our data suggests that in addition to strong Mincle binding, which is a pre-requisite for Mincle-mediated cellular responses, the physical presentation of trehalose glycolipids in colloidal form is required for inflammasome activation, and hence, a strong inflammatory immune response.
Collapse
Affiliation(s)
| | - Emma M. Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Aodhamair Woods
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Brenda S. Luong
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan,Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Bridget L. Stocker, ; Mattie S. M. Timmer,
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Bridget L. Stocker, ; Mattie S. M. Timmer,
| |
Collapse
|
2
|
The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Mar Drugs 2022; 20:md20080488. [PMID: 36005489 PMCID: PMC9409833 DOI: 10.3390/md20080488] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The survival selection pressure caused by antibiotic-mediated bactericidal and bacteriostatic activity is one of the important inducements for bacteria to develop drug resistance. Bacteria gain drug resistance through spontaneous mutation so as to achieve the goals of survival and reproduction. Quorum sensing (QS) is an intercellular communication system based on cell density that can regulate bacterial virulence and biofilm formation. The secretion of more than 30 virulence factors of P. aeruginosa is controlled by QS, and the formation and diffusion of biofilm is an important mechanism causing the multidrug resistance of P. aeruginosa, which is also closely related to the QS system. There are three main QS systems in P. aeruginosa: las system, rhl system, and pqs system. Quorum-sensing inhibitors (QSIs) can reduce the toxicity of bacteria without affecting the growth and enhance the sensitivity of bacterial biofilms to antibiotic treatment. These characteristics make QSIs a popular topic for research and development in the field of anti-infection. This paper reviews the research progress of the P. aeruginosa quorum-sensing system and QSIs, targeting three QS systems, which will provide help for the future research and development of novel quorum-sensing inhibitors.
Collapse
|
3
|
Peyrottes A, Coquant G, Brot L, Rainteau D, Seksik P, Grill JP, Mallet JM. Anti-Inflammatory Effects of Analogues of N-Acyl Homoserine Lactones on Eukaryotic Cells. Int J Mol Sci 2020; 21:E9448. [PMID: 33322538 PMCID: PMC7764250 DOI: 10.3390/ijms21249448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Since acyl-homoserine lactone (AHL) profiling has been described in the gut of healthy subjects and patients with inflammatory bowel disease (IBD), the potential effects of these molecules on host cells have raised interest in the medical community. In particular, natural AHLs such as the 3-oxo-C12-HSL exhibit anti-inflammatory properties. Our study aimed at finding stable 3-oxo-C12-HSL-derived analogues with improved anti-inflammatory effects on epithelial and immune cells. METHODS We first studied the stability and biological properties of the natural 3-oxo-C12-HSL on eukaryotic cells and a bacterial reporter strain. We then constructed and screened a library of 22 AHL-derived molecules. Anti-inflammatory effects were assessed by cytokine release in an epithelial cell model, Caco-2, and a murine macrophage cell line, RAW264.7, (respectively, IL-8 and IL-6) upon exposure to the molecule and after appropriate stimulation (respectively, TNF-α 50 ng/mL and IFN-γ 50 ng/mL, and LPS 10 ng/mL and IFN-γ 20 U/mL). RESULTS We found two molecules of interest with amplified anti-inflammatory effects on mammalian cells without bacterial-activating properties in the reporter strain. The molecules furthermore showed improved stability in biological medium compared to the native 3-oxo-C12-HSL. CONCLUSIONS We provide new bio-inspired AHL analogues with strong anti-inflammatory properties that will need further study from a therapeutic perspective.
Collapse
Affiliation(s)
- Agathe Peyrottes
- Laboratoire des Biomolécules (LBM), Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France; (A.P.); (J.-M.M.)
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Garance Coquant
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Loïc Brot
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Dominique Rainteau
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Philippe Seksik
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
- Service de Gastroentérologie et Nutrition, Hôpital Saint-Antoine, APHP, 75012 Paris, France
| | - Jean-Pierre Grill
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules (LBM), Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France; (A.P.); (J.-M.M.)
| |
Collapse
|
4
|
Danaraj J, Mariasingarayan Y, Ayyappan S, Karuppiah V. Seagrass Halodule pinifolia active constituent 4-methoxybenzioic acid (4-MBA) inhibits quorum sensing mediated virulence production of Pseudomonas aeruginosa. Microb Pathog 2020; 147:104392. [PMID: 32711114 DOI: 10.1016/j.micpath.2020.104392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
Biofilm associated, multidrug resistant Pseudomonas aeruginosa infection remain a challenging problem in the clinical field since the conventional antibiotic therapy are largely inefficient and new approaches are needed. Inactivating the QS virulence mechanism with anti-infective agent is an attractive approach to prevent bacterial infections without resistance development. Seagrass Halodule pinifolia (Miki) Hartog has been shown to exhibit potential antimicrobial activities against harmful pathogens. Our study investigated the effects of seagrass H. pinifolia leaf extract and its bioactive constituents on QS-mediated virulence factors and biofilm formation in P. aerugonasa PAO1. Preliminary screening on antibiofilm activity showed that the methanolic extract of H. pinifolia exhibited potential inhibition of biofilm formation (96%) as compared to the control respectively. Further, the potential extract was column fractionated and the active fraction was characterized by GC-MS. In total eight active compounds (protocatacheuic acid (69.3%), rosmarinic acid (63.5%), caffeic acid (59.18%), p-coumaric acid (59.08%), 4-methoxybenzoic acid (53.19%), naringenin (52.9%), vanillic acid (49.19%), 4-hydroxybenzoic acid (41.73%)) were profiled from fraction 2 and were purified by HPLC, structurally confirmed by NMR. Among the eight compounds studied, 4-methoxybenzoic acid (4-MBA) showed an effective inhibition of bacterial growth and was considered as a lead molecule with minimum inhibitory concentration (MIC) of 62.5 μg/mL. Further the effect of 4-MBA on QS mediated virulence factors demonstrated that the compound at MIC concentration reduced the virulence factor production such as elastase (87.5%), protease (79.38%), pyocyanin (91.46%), rhamnolipid (86%), alginate (86%), chitinase (55%), exopolysaccharide production (83.72%) and CSH (78.39%) over the control respectively. Moreover, 4-MBA down regulated the QS-mediated virulence transcript levels upon treatment with 4-MBA. The present findings suggests that seagrasses may act as a newer source for the marine based drug discovery and the lead compound 4-MBA derived from H. pinifolia may act as anti-infective agent against P. aeruginosa as it controls the QS-mediated virulence production.
Collapse
Affiliation(s)
- Jeyapragash Danaraj
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamilnadu, India; Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Eachanari Post, Coimbatore, 641 021, Tamilnadu, India.
| | - Yosuva Mariasingarayan
- M. S. Swaminathan Research Foundation, Thangachimadam, Rameswaram, 623529, Tamilnadu, India
| | - Saravanakumar Ayyappan
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamilnadu, India
| | - Vijayakumar Karuppiah
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamilnadu, India
| |
Collapse
|
5
|
Vijayakumar K, Ramanathan T. Musa acuminata and its bioactive metabolite 5-Hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112242. [PMID: 31533077 DOI: 10.1016/j.jep.2019.112242] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musa acuminata, a tropical plant belongs to the family Musaceae. The fruit peels of this plant have been well documented for their therapeutic value in Asia and Africa. It has also been previously reported for numerous biological applications such as antimicrobial, antioxidant, itching, psoriasis and anti-diarrheal activities. Moreover, M. acuminata peels have been well known for its anti-healing and antiseptic properties and most commonly used for healing wounds and heat burns in South Asian and African traditional medicines. AIM OF THE STUDY To evaluate the QS-mediated antibiofilm and antivirulence potential of M. acuminata, and its bioactive metabolites 5-Hydroxymethylfurfural (5HMF) against Pseudomonas aeruginosa. MATERIALS AND METHODS The M. acuminata peel methanol extract (MAM) was evaluated for its antibiofilm potential against P. aeruginosa with increasing concentration. Besides, biofilm related phenomenon's such as total biofilm proteins, microcolony formation exopolysaccharides (EPS) and cell surface hydrophobicity (CSH) productions were also examined to support the antibiofilm potential of MAM. Further, MAM was evaluated for its antivirulence efficacy against P. aeruginosa by assessing the protease, LasA protease, LasB elastase, pyocyanin, alginate and rhamnolipid productions at 400 μg ml-1 concentration. Transcriptional analysis of QS regulated virulence genes expression level was also done by real-time PCR analysis. Then, the MAM was subjected to column chromatography for further fractions and the bioactive compounds present in MAM were identified by gas chromatograph-mass spectrometry analysis. Further, the major compounds such as 5-hydroxymethylfurfural, vaccenic acid and pentanoic acid identified from active fraction of MAM were evaluated for their antibiofilm and antivirulence potential against P. aeruginosa. RESULTS MAM significantly inhibited the biofilm formation in P. aeruginosa at 400 μg ml-1 concentration which also inhibited the production of biofilm proteins, biofilm adherence, EPS and CSH productions to the level of 79%, 82% and 77% respectively. Further, the antivirulence potential was confirmed through numerous virulence inhibition assays. The MAM at 400 μg ml-1 concentration inhibited the QS-mediated virulence production such as protease, LasA protease, LasB elastase, pyocyanin, alginate and rhamnolipid productions to the level of 77%, 75%, 68%, 80%, 78% and 69% respectively. Moreover, the results of qPCR analysis confirmed the downregulation of QS regulated virulence genes expression upon treatment with MAM. The chromatographic analysis revealed the presence of 5-Hydroxymethylfurfural (5HMF), vaccenic acid and pentanoic acid in MAM and the potential bioactive compounds with antibiofilm and antivirulence was identified as 5-hydroxymethylfurfural, without exerting any growth inhibition in P. aeruginosa. CONCLUSION This study investigated the ideal antibiofilm and antivirulence potential of MAM and its bioactive compound 5HMF, and confirms the ethnopharmacological value of these peels against P. aeruginosa infections.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Thirunanasambandham Ramanathan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
6
|
Ni S, Li B, Xu Y, Mao F, Li X, Lan L, Zhu J, Li J. Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Med Res Rev 2019; 40:293-338. [PMID: 31267561 DOI: 10.1002/med.21621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The fascinating and dangerous colored pathogens contain unique chemically pigmented molecules, which give varied and efficient assistance as virulence factors to the crucial reproduction and growth of microbes. Therefore, multiple novel strategies and inhibitors have been developed in recent years that target virulence factor pigments. However, despite the importance and significance of this topic, it has not yet been comprehensively reviewed. Moreover, research groups around the world have made successful progress against antibacterial infections by targeting pigment production, including our serial works on the discovery of CrtN inhibitors against staphyloxanthin production in Staphylococcus aureus. On the basis of the previous achievements and recent progress of our group in this field, this article will be the first comprehensive review of pigment inhibitors against colored pathogens, especially S. aureus infections, and this article includes design strategies, representative case studies, advantages, limitations, and perspectives to guide future research.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Pewklang T, Chansaenpak K, Lai RY, Noisa P, Kamkaew A. Aza-BODIPY probe for selective visualization of cyclooxygenase-2 in cancer cells. RSC Adv 2019; 9:13372-13377. [PMID: 35519572 PMCID: PMC9063976 DOI: 10.1039/c9ra01948k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
AZB-IMC2 was developed as a COX-2 specific probe that exhibited a brighter fluorescence signal in cancer cells that overexpress COX-2 compared to normal cells. Oxidative stress agent-treated inflamed cell lines inducing high COX-2 levels revealed an enhanced fluorescence signal. Inhibitory studies showed a markedly reduced fluorescence intensity in cancer cells. The results suggested that AZB-IMC2 could be developed as a promising molecular tool for imaging guiding during surgery. A bivalent indomethacin/Aza-BODIPY conjugate can selectively visualize the COX-2 enzyme in cancer and inflamed cells confirming its potential as a COX-2-specific biomarker in clinical applications.![]()
Collapse
Affiliation(s)
- Thitima Pewklang
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima
- Thailand 30000
| | - Kantapat Chansaenpak
- National Nanotechnology Center
- National Science and Technology Development Agency
- Thailand Science Park
- Thailand 12120
| | - Rung-Yi Lai
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima
- Thailand 30000
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations
- School of Biotechnology
- Institute of Agricultural Technology
- Suranaree University of Technology
- Nakhon Ratchasima
| | - Anyanee Kamkaew
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima
- Thailand 30000
| |
Collapse
|
8
|
LewisOscar F, Nithya C, Alharbi SA, Alharbi NS, Thajuddin N. In vitro and in silico attenuation of quorum sensing mediated pathogenicity in Pseudomonas aeruginosa using Spirulina platensis. Microb Pathog 2018; 116:246-256. [DOI: 10.1016/j.micpath.2018.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
|
9
|
Nottingham KG, McNally A, McNaughton BR. Synthesis of biotinylated diazinon: Lessons learned for biotinylation of thiophosphate esters. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Morkunas B, Gal B, Galloway WRJD, Hodgkinson JT, Ibbeson BM, Tan YS, Welch M, Spring DR. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells. Beilstein J Org Chem 2016; 12:1428-33. [PMID: 27559393 PMCID: PMC4979876 DOI: 10.3762/bjoc.12.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.
Collapse
Affiliation(s)
- Bernardas Morkunas
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Balint Gal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | - James T Hodgkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Brett M Ibbeson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Yaw Sing Tan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK; Bioinformatics Institute, ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| |
Collapse
|