1
|
Wang YJ, Zhen XH, Zhou YJ, Wang YL, Hou JY, Wang X, Li RM, Liu J, Hu XW, Geng MT, Yao Y, Guo JC. MeNINV1: An Alkaline/Neutral Invertase Gene of Manihot esculenta, Enhanced Sucrose Catabolism and Promoted Plant Vegetative Growth in Transgenic Arabidopsis. PLANTS 2022; 11:plants11070946. [PMID: 35406926 PMCID: PMC9003190 DOI: 10.3390/plants11070946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Alkaline/neutral invertase (A/N-INV) is an invertase that irreversibly decomposes sucrose into fructose as well as glucose and plays a role in plant growth and development, starch synthesis, abiotic stress, and other plant-life activities. Cassava is an economically important starch crop in tropical regions. During the development of cassava tuber roots, A/N-INV activity is relatively high, which indicates that it may participate in sucrose metabolism and starch synthesis. In this study, MeNINV1 was confirmed to function as invertase to catalyze sucrose decomposition in yeast. The optimal enzymatic properties of MeNINV1 were a pH of 6.5, a reaction temperature of 40 °C, and sucrose as its specific catalytic substrate. VB6, Zn2+, and Pb2+ at low concentrations as well as EDTA, DTT, Tris, Mg2+, and fructose inhibited A/N-INV enzymic activity. In cassava, the MeNINV1 gene was mainly expressed in the fibrous roots and the tuber root phloem, and its expression decreased as the tuber root grew. MeNINV1 was confirmed to localize in chloroplasts. In Arabidopsis, MeNINV1-overexpressing Arabidopsis had higher A/N-INV activity, and the increased glucose, fructose, and starch content in the leaves promoted plant growth and delayed flowering time but did not change its resistance to abiotic stress. Our results provide new insights into the biological function of MeNINV1.
Collapse
Affiliation(s)
- Ya-Jie Wang
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.-J.W.); (X.-H.Z.); (Y.-J.Z.); (J.-Y.H.); (X.W.); (X.-W.H.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-L.W.); (R.-M.L.); (J.L.)
| | - Xing-Hou Zhen
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.-J.W.); (X.-H.Z.); (Y.-J.Z.); (J.-Y.H.); (X.W.); (X.-W.H.)
| | - Yang-Jiao Zhou
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.-J.W.); (X.-H.Z.); (Y.-J.Z.); (J.-Y.H.); (X.W.); (X.-W.H.)
| | - Yun-Lin Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-L.W.); (R.-M.L.); (J.L.)
| | - Jing-Yi Hou
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.-J.W.); (X.-H.Z.); (Y.-J.Z.); (J.-Y.H.); (X.W.); (X.-W.H.)
| | - Xin Wang
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.-J.W.); (X.-H.Z.); (Y.-J.Z.); (J.-Y.H.); (X.W.); (X.-W.H.)
| | - Rui-Mei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-L.W.); (R.-M.L.); (J.L.)
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-L.W.); (R.-M.L.); (J.L.)
| | - Xin-Wen Hu
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.-J.W.); (X.-H.Z.); (Y.-J.Z.); (J.-Y.H.); (X.W.); (X.-W.H.)
| | - Meng-Ting Geng
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.-J.W.); (X.-H.Z.); (Y.-J.Z.); (J.-Y.H.); (X.W.); (X.-W.H.)
- Correspondence: (M.-T.G.); (Y.Y.); (J.-C.G.); Tel.: +86-898-6696-2953 (Y.Y.); +86-898-6696-2953 (J.-C.G.)
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-L.W.); (R.-M.L.); (J.L.)
- Correspondence: (M.-T.G.); (Y.Y.); (J.-C.G.); Tel.: +86-898-6696-2953 (Y.Y.); +86-898-6696-2953 (J.-C.G.)
| | - Jian-Chun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-L.W.); (R.-M.L.); (J.L.)
- Correspondence: (M.-T.G.); (Y.Y.); (J.-C.G.); Tel.: +86-898-6696-2953 (Y.Y.); +86-898-6696-2953 (J.-C.G.)
| |
Collapse
|
2
|
Han FX, Dun BQ, Zhang J, Wang Z, Sui Y, Zhu L, Li GY. Cloning and functional analysis of soluble acid invertase 2 gene (SbSAI-2) in sorghum. PLANTA 2021; 255:13. [PMID: 34862923 DOI: 10.1007/s00425-021-03772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The sorghum soluble acid invertase gene SbSAI-2 was cloned and the function verified in Pichia pastoris and rice, showing the SbSAI-2 affects composition and content of sugar in stem juice. Sugar metabolism is one of the most important metabolic processes in plants, in which soluble acid invertase plays a key role. However, the structure and function of the soluble acid transferase gene in sorghum are still fully unclear. In this study, SbSAI-2 was cloned from the sorghum variety BTx623, and two transcripts were found through sequence analysis, with only one transcript translated into an active protein. There is 72% homology between SbSAI-2 and OsVIN2. The construction of Osvin2 mutant lines and SbSAI-2-1 overexpression lines in Oryza sativa L. japonica. cv. Nipponbare were produced to clarify the invertase functionality. While the invertase activity in the stem of the Osvin2 mutant line was reduced, with no significant difference (P > 0.05), and the contents of fructose and glucose in stem tissue did not change significantly (P > 0.05), and the content of sucrose increased by 38.89% (P < 0.01). In SbSAI-2-1 overexpression lines, the invertase activity in stem was increased by more than 20 times (P < 0.01). The contents of glucose and fructose in stem tissues were increased by two and three times, respectively (P < 0.01), while the content of sucrose was significantly decreased, which was below the detection limit (P < 0.01). This study indicated that SbSAI-2 is a key enzyme related to sucrose metabolism and affects the composition and content of sugar in stems. The result provided further the gene function verification and laid a foundation for the development of molecular markers.
Collapse
Affiliation(s)
- Fen-Xia Han
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bao-Qing Dun
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ji Zhang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhi Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yi Sui
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Gui-Ying Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Lv J, Chen B, Ma C, Qiao K, Fan S, Ma Q. Identification and characterization of the AINV genes in five Gossypium species with potential functions of GhAINVs under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 173:2091-2102. [PMID: 34537974 DOI: 10.1111/ppl.13559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Acid invertase (AINV) is a kind of sucrose hydrolase with an important role in plants. Currently, the AINV genes have not been systematically studied in cotton. In this study, a total of 92 AINV genes were identified in five cotton species. The phylogenetic analysis revealed that the AINV proteins were divided into two subgroups in cotton: vacuolar invertase (VINV) and cell wall invertase (CWINV). The analysis of gene structures, conserved motifs, and three-dimensional protein structures suggested that GhAINVs were significantly conserved. The synteny analysis showed that whole-genome duplication was the main force promoting the expansion of the AINV gene family. The cis-element, transcriptome, and quantitative real time-polymerase chain reaction (qRT-PCR) showed that some GhAINVs were possibly associated with stress response. GhCWINV4, highly expressed in PEG treatment, was cloned, and subsequent virus-induced gene silencing assay confirmed that this gene was involved in the drought stress response. Overall, this study might be helpful for further analyzing the biological function of AINVs and provide clues for improving the resistance of cotton to stress.
Collapse
Affiliation(s)
- Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Baizhi Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| |
Collapse
|
4
|
Liu C, Xi H, Chen X, Zhao Y, Yao J, Si J, Zhang L. Genome-wide identification and expression pattern of alkaline/neutral invertase gene family in Dendrobium catenatum. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1901610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Chen Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Hangxian Xi
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
5
|
Shen LB, Qin YL, Qi ZQ, Niu Y, Liu ZJ, Liu WX, He H, Cao ZM, Yang Y. Genome-Wide Analysis, Expression Profile, and Characterization of the Acid Invertase Gene Family in Pepper. Int J Mol Sci 2018; 20:ijms20010015. [PMID: 30577540 PMCID: PMC6337152 DOI: 10.3390/ijms20010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Catalytic decomposition of sucrose by acid invertases (AINVs) under acidic conditions plays an important role in the development of sink organs in plants. To reveal the function of AINVs in the development of pepper fruits, nine AINV genes of pepper were identified. Protein sequencing and phylogenetic analysis revealed that the CaAINV family may be divided into cell wall invertases (CaCWINV1⁻7) and vacuolar invertases (CaVINV1⁻2). CaAINVs contain conserved regions and protein structures typical of the AINVs in other plants. Gene expression profiling indicated that CaCWINV2 and CaVINV1 were highly expressed in reproductive organs but differed in expression pattern. CaCWINV2 was mainly expressed in buds and flowers, while CaVINV1 was expressed in developmental stages, such as the post-breaker stage. Furthermore, invertase activity of CaCWINV2 and CaVINV1 was identified via functional complementation in an invertase-deficient yeast. Optimum pH for CaCWINV2 and CaVINV1 was found to be 4.0 and 4.5, respectively. Gene expression and enzymatic activity of CaCWINV2 and CaVINV1 indicate that these AINV enzymes may be pivotal for sucrose hydrolysis in the reproductive organs of pepper.
Collapse
Affiliation(s)
- Long-Bin Shen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Yu-Ling Qin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Zhi-Qiang Qi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Yu Niu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Zi-Ji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Wei-Xia Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Huang He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Zhen-Mu Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Yan Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| |
Collapse
|
6
|
Slugina MA, Shchennikova AV, Kochieva EZ. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Mol Genet Genomics 2017. [PMID: 28634826 DOI: 10.1007/s00438-017-1336-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.
Collapse
Affiliation(s)
- M A Slugina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia. .,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia.,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|