1
|
Maetens L, Maiti B, Cools F, Verheye S, Daelemans D, Persoons L, Temmerman L, Kieswetter A, Van der Eycken EV, Coppola GA, Vackier T, Steenackers HP. Optimizing biofilm inhibitors: Balancing activity and toxicity in 2N-aminated 5-aryl-2-aminoimidazoles. Bioorg Med Chem 2025; 121:118115. [PMID: 40010036 DOI: 10.1016/j.bmc.2025.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
To evaluate the effect of amination on biofilm inhibition against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, representative compounds of two previously described 5-aryl-2-aminoimidazole (5-Ar-2-AI) classes were aminated by installing an amino group at the end of the substituted n-alkyl chain. Amination led to an improvement in activity for one of the two classes, the 2N-substituted 5-Ar-2-AI class. Based on these findings, a more extensive library of 2N-substituted-aminated 5-Ar-2-AIs was synthesized having different n-alkyl and halogen substitutions on the 2N-position and the 4(5)-phenyl ring, respectively. Compounds were evaluated for their biofilm inhibitory activity against E. coli, P. aeruginosa, S. aureus, Staphylococcus epidermidis and MRSA. Additionally, their toxicity was tested on eight continuous cell lines, peripheral blood mononuclear cells and Caenorhabditis elegans, along with their genotoxicity on Capan-1. Halogenation and elongation of the n-alkyl substituent showed a positive effect on biofilm inhibitory activity, but also increased toxicity. Compromising between activity and toxicity, a non-halogenated 2N-substituted-aminated 5-Ar-2-AI compound with an intermediate n-heptyl substitution demonstrated promising broad-spectrum biofilm inhibition, making it a suitable candidate for further research in anti-infectious medical applications.
Collapse
Affiliation(s)
- Lynn Maetens
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Amynas, Euster 104, 2570 Duffel, Belgium.
| | - Banibrata Maiti
- Laboratory for Organic & Microwave-assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | - Dirk Daelemans
- Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Immunology and Transplantation, Department of Microbiology, KU Leuven, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium.
| | - Leentje Persoons
- Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Immunology and Transplantation, Department of Microbiology, KU Leuven, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; People's Friendship University of Russia, RUDN University, Miklukho-Maklaya Street 6, RU-117198 Moscow, Russia.
| | - Guglielmo A Coppola
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Laboratory for Organic & Microwave-assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Hans P Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Jacobs L, Meesters J, Parijs I, Hooyberghs G, Van der Eycken EV, Lories B, Steenackers HP. 2-Aminoimidazoles as potent inhibitors of contaminating brewery biofilms. BIOFOULING 2021; 37:61-77. [PMID: 33573402 DOI: 10.1080/08927014.2021.1874366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Cleaning and disinfection protocols are not always able to remove biofilm microbes present in breweries, indicating that novel anti-biofilm strategies are needed. The preventive activities of three in-house synthesized members of the 2-aminoimidazole class of anti-biofilm molecules were studied against 17 natural brewery biofilms and benchmarked against 18 known inhibitors. Two 2-aminoimidazoles belonged to the top six inhibitors, which were retested against 12 defined brewery biofilm models. For the three best inhibitors, tannic acid (n° 1), 2-aminoimidazole imi-AAC-5 (n° 2), and baicalein (n° 3), the effect on the microbial metabolic activity was evaluated. Here, the top three inhibitors showed similar effectiveness, with baicalein possessing a slightly higher efficacy. Even though the 2-aminoimidazole was the second-best inhibitor, it showed a lower biocidal activity than tannic acid, making it less prone to resistance evolution. Overall, this study supports the potential of 2-aminoimidazoles as a preventive anti-biofilm strategy.
Collapse
Affiliation(s)
- Lene Jacobs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | | - Ilse Parijs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | - Geert Hooyberghs
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Bram Lories
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | |
Collapse
|
3
|
Dieltjens L, Appermans K, Lissens M, Lories B, Kim W, Van der Eycken EV, Foster KR, Steenackers HP. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat Commun 2020; 11:107. [PMID: 31919364 PMCID: PMC6952394 DOI: 10.1038/s41467-019-13660-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023] Open
Abstract
Bacteria commonly form dense biofilms encased in extracellular polymeric substances (EPS). Biofilms are often extremely tolerant to antimicrobials but their reliance on shared EPS may also be a weakness as social evolution theory predicts that inhibiting shared traits can select against resistance. Here we show that EPS of Salmonella biofilms is a cooperative trait whose benefit is shared among cells, and that EPS inhibition reduces both cell attachment and antimicrobial tolerance. We then compare an EPS inhibitor to conventional antimicrobials in an evolutionary experiment. While resistance against conventional antimicrobials rapidly evolves, we see no evolution of resistance to EPS inhibition. We further show that a resistant strain is outcompeted by a susceptible strain under EPS inhibitor treatment, explaining why resistance does not evolve. Our work suggests that targeting cooperative traits is a viable solution to the problem of antimicrobial resistance. Bacterial biofilms rely on shared extracellular polymeric substances (EPS) and are often highly tolerant to antibiotics. Here, the authors show in in vitro experiments that Salmonella does not evolve resistance to EPS inhibition because such strains are outcompeted by a susceptible strain under inhibitor treatment.
Collapse
Affiliation(s)
- Lise Dieltjens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Kenny Appermans
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Maries Lissens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Wook Kim
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.,Department of Biological Sciences, Duquesne University, Pittsburgh, USA
| | - Erik V Van der Eycken
- Department of Chemistry, Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), KU Leuven, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, Russia
| | - Kevin R Foster
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium. .,Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Enhancing the anti-biofilm activity of 5-aryl-2-aminoimidazoles through nature inspired dimerisation. Bioorg Med Chem 2018; 26:1470-1480. [PMID: 29449125 DOI: 10.1016/j.bmc.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/22/2022]
Abstract
The increased tolerance of biofilms against disinfectants and antibiotics has stimulated research into new methods of biofilm prevention and eradication. In our previous work, we have identified the 5-aryl-2-aminoimidazole core as a scaffold that demonstrates preventive activity against biofilm formation of a broad range of bacterial and fungal species. Inspired by the dimeric nature of natural 2-aminoimidazoles of the oroidin family, we investigated the potential of dimers of our decorated 5-aryl-2-aminoimidazoles as biofilm inhibitors. A synthetic approach towards 2-aminoimidazole dimers linked by an alkyl chain was developed and a total of 48 dimers were synthesized. The linkers were introduced at two different positions, the N1-position or the N2-position, and the linker length and the substitution of the 5-phenyl ring (H, F, Cl, Br) were varied. Although, no clear correlation between linker length and biofilm inhibition was observed, a strong increase in anti-biofilm activity for almost all N1,N1'-linked dimers was obtained, compared to the respective monomers against Salmonella Typhimurium, Escherichia coli and Staphylococcus aureus. The N2,N2'-linked dimers, having a H- or F-substitution, were also found to show a strong increase in anti-biofilm activity compared to the respective monomers against these three bacterial species and against Pseudomonas aeruginosa. In addition, the obtained growth measurements suggest a broad concentration range with specific biofilm inhibition and no effect on the planktonic growth against Salmonella Typhimurium and Pseudomonas aeruginosa.
Collapse
|
5
|
Claes B, Boudewijns T, Muchez L, Hooyberghs G, Van der Eycken EV, Vanderleyden J, Steenackers HP, De Vos DE. Smart Metal-Organic Framework Coatings: Triggered Antibiofilm Compound Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4440-4449. [PMID: 28081368 DOI: 10.1021/acsami.6b14152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Metal-organic frameworks (MOFs) have a large potential for delivery of active molecules. Here, a MOF coating is investigated as a smart host matrix for triggered release of antibiofilm compounds. In addition to a coating consisting of the regular Fe-terephthalate MIL-88B(Fe), a new hydrophobic MIL-88B(Fe) coating is synthesized in hydrothermal conditions using palmitic acid as a lattice terminating group. These porous materials are used as a host matrix for the antibiofilm compound 5-(4-chlorophenyl)-N-(2-isobutyl)-2-aminoimidazole, which has a specific biofilm-inhibiting effect at concentrations at which no activity against planktonic cells is detected. The stability of MIL-88B(Fe) in distilled water and tryptic soy broth medium is investigated, together with the ability of iron(III) chelators to serve as a trigger for controlled decomposition of MIL-88B(Fe) by metal complexation. Organic iron chelators are used to mimic the iron chelating function of siderophores, which are specific molecules excreted by biofilm-forming bacteria. Trisodium citrate is able to chelate metal ions from the junctions of the framework. By sequestration of these metal ions, the host matrix is partially degraded, resulting in an antibiofilm compound release. Finally, the antibiofilm properties against Salmonella Typhimurium are validated by monitoring biofilm growth on MOF layers either loaded or not with aminoimidazole. A strong proof-of-concept is shown for efficient inhibition of biofilm growth through triggered antibiofilm compound release.
Collapse
Affiliation(s)
- Birgit Claes
- Centre for Surface Chemistry and Catalysis, KU Leuven , Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Tom Boudewijns
- Centre for Surface Chemistry and Catalysis, KU Leuven , Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Laurens Muchez
- Centre for Surface Chemistry and Catalysis, KU Leuven , Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Geert Hooyberghs
- Molecular Design and Synthesis, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Erik V Van der Eycken
- Molecular Design and Synthesis, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jozef Vanderleyden
- Centre for Microbial and Plant Genetics, KU Leuven , Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Hans P Steenackers
- Centre for Microbial and Plant Genetics, KU Leuven , Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, KU Leuven , Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity. Antimicrob Agents Chemother 2016; 60:6483-6497. [PMID: 27550355 PMCID: PMC5075052 DOI: 10.1128/aac.00035-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022] Open
Abstract
We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity spectrum and toxicity.
Collapse
|
7
|
Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 2016; 33:41-46. [PMID: 27318551 DOI: 10.1016/j.mib.2016.06.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 11/23/2022]
Abstract
As antibiotic resistance remains a major public health threat, anti-virulence therapy research is gaining interest. Hundreds of potential anti-virulence compounds have been examined, but very few have made it to clinical trials and none have been approved. This review surveys the current anti-virulence research field with a focus on the highly resistant and deadly ESKAPE pathogens, especially Pseudomonas aeruginosa. We discuss timely considerations and caveats in anti-virulence drug development, including target identification, administration, preclinical development, and metrics for success in clinical trials. Development of a defined pipeline for anti-virulence agents, which differs in important ways from conventional antibiotics, is imperative for the future success of these critically needed drugs.
Collapse
|
8
|
Gerits E, Blommaert E, Lippell A, O’Neill AJ, Weytjens B, De Maeyer D, Fierro AC, Marchal K, Marchand A, Chaltin P, Spincemaille P, De Brucker K, Thevissen K, Cammue BPA, Swings T, Liebens V, Fauvart M, Verstraeten N, Michiels J. Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa. PLoS One 2016; 11:e0155139. [PMID: 27167126 PMCID: PMC4864301 DOI: 10.1371/journal.pone.0155139] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/25/2016] [Indexed: 01/29/2023] Open
Abstract
Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies.
Collapse
Affiliation(s)
- Evelien Gerits
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Eline Blommaert
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Anna Lippell
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex J. O’Neill
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Bram Weytjens
- Department of Information Technology (INTEC, iMINDS), U.Ghent, Ghent, Belgium
| | - Dries De Maeyer
- Department of Information Technology (INTEC, iMINDS), U.Ghent, Ghent, Belgium
| | - Ana Carolina Fierro
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), U.Ghent, Ghent, Belgium
| | - Kathleen Marchal
- Department of Information Technology (INTEC, iMINDS), U.Ghent, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, U.Ghent, Ghent, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Bio-Incubator, KU Leuven, Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Bio-Incubator, KU Leuven, Leuven, Belgium
- Centre for Drug Design and Discovery (CD3), Research and Development, KU Leuven, Leuven, Belgium
| | - Pieter Spincemaille
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Toon Swings
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Veerle Liebens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- imec, Smart Systems and Emerging Technologies Unit, Department of Life Science Technologies, Leuven, Belgium
| | | | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|