1
|
Ayokun-Nun Ajao A, Calphonia Shilaluke K, Sonnyboy Mothogoane M, Ntsamaeeng Moteetee A. The Pantropical Genus Rhynchosia Lour. (Fabaceae: Cajaninae): Diversity of Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology. Chem Biodivers 2025; 22:e202401436. [PMID: 39294101 DOI: 10.1002/cbdv.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
The pantropical genus Rhynchosia belongs to the family Fabaceae and consists of approximately 230 species distributed mainly in Africa, America, and Asia. Several species of the genus have been used ethnomedicinally since 300-400 AD. This review presents for the first time a global overview of the extent of ethnomedicinal uses of species in the genus in addition to their phytochemistry, pharmacological activities, and toxicology. Online databases such as NCBI, PubMed, Science Direct, Scopus, SpringerLink, Taylor and Francis Online, etc., were used to source for publications on Rhynchosia species. Based on this review, 30 species (19 %) are traditionally used for treating an array of ailments around the globe, most especially in Africa and Asia. Flavonoids are the most detected/isolated phytochemicals from the Rhynchosia species. Pharmacological activities such as anticancer, antidiabetic, anti-hyperlipidemic, antifungal, antioxidant, anti-inflammatory, antinociceptive, butyrylcholinesterase, as well as eye-protective and melanogenic effects were elicited by the extracts and isolated compounds from Rhynchosia species. Toxicity tests have only been carried out on R. sublobata and R. elegans extracts. Future studies should focus on the toxicological evaluation and validation of ethnomedicinal claims on the traditional uses of Rhynchosia species that have not been pharmacologically tested.
Collapse
Affiliation(s)
- Abdulwakeel Ayokun-Nun Ajao
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Kolwane Calphonia Shilaluke
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Mashiane Sonnyboy Mothogoane
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
- South African National Biodiversity Institute, National Herbarium, Private Bag X101, Pretoria, 0001, South Africa
| | - Annah Ntsamaeeng Moteetee
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
2
|
Jia X, Huang Y, Liu G, Li Z, Tan Q, Zhong S. The Use of Polysaccharide AOP30 from the Rhizome of Alpinia officinarum Hance to Alleviate Lipopolysaccharide-Induced Intestinal Epithelial Barrier Dysfunction and Inflammation via the TLR4/NfκB Signaling Pathway in Caco-2 Cell Monolayers. Nutrients 2024; 16:2151. [PMID: 38999898 PMCID: PMC11243348 DOI: 10.3390/nu16132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Alpinia officinarum Hance is rich in carbohydrates and is flavored by natives. The polysaccharide fraction 30 is purified from the rhizome of A. officinarum Hance (AOP30) and shows excellent immunoregulatory ability when administered to regulate immunity. However, the effect of AOP30 on the intestinal epithelial barrier is not well understood. Therefore, the aim of this study is to investigate the protective effect of AOP30 on the intestinal epithelial barrier using a lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction model and further explore its underlying mechanisms. Cytotoxicity, transepithelial electrical resistance (TEER) values, and Fluorescein isothiocyanate (FITC)-dextran flux are measured. Simultaneously, the protein and mRNA levels of tight junction (TJ) proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, are determined using Western blotting and reverse-transcription quantitative polymerase chain reaction methods, respectively. The results indicate that AOP30 restores the LPS-induced decrease in the TEER value and cell viability. Furthermore, it increases the mRNA and protein expression of ZO-1, Occludin, and Claudin-1. Notably, ZO-1 is the primary tight junction protein altered in response to LPS-induced intestinal epithelial dysfunction. Additionally, AOP30 downregulates the production of TNFα via the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, the findings of this study indicate that AOP30 can be developed as a functional food ingredient or natural therapeutic agent for addressing intestinal epithelial barrier dysfunction. It sheds light on the role of AOP30 in improving intestinal epithelial function.
Collapse
Affiliation(s)
- Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guanghuo Liu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zipeng Li
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiwei Tan
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
3
|
Jia X, Liu G, Huang Y, Li Z, Liu X, Wang Z, Li R, Song B, Zhong S. Ultrasonic-Assisted Extraction, Structural Characteristics, and Antioxidant Activities of Polysaccharides from Alpinia officinarum Hance. Foods 2024; 13:333. [PMID: 38275700 PMCID: PMC10815092 DOI: 10.3390/foods13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Alpinia officinarum Hance, a well known agricultural product in the Lei Zhou peninsula, is generally rich in polysaccharides. In order to enhance the use of A. officinarum Hance polysaccharides (AOP) in functional food, AOP was extracted using an ultrasonic-assisted extraction method, and the ultrasonic extraction parameters of AOP was optimized. Furthermore, this study investigated the physicochemical and antioxidant activities of AOPs. In addition, the structural properties were preliminarily determined using Fourier-transform infrared spectroscopy (FTIR), high performance size exclusion chromatography, and a Zetasizer. Ultimately, this study explored the mechanism underlying the antioxidant activities of AOP. The results showed that the optimal ultrasonic-assisted extraction parameters were as follows: ultrasonic time, 6 min; ratio of water to material, 12 mL/g; and ultrasonic power, 380 W. Under these conditions, the maximum yield of AOPs was 5.72%, indicating that ultrasonic-assisted extraction technology is suitable for extracting AOPs due to the reduced time and water usage. Additionally, AOPs were purified using graded alcohol precipitation, resulting in three fractions (AOP30, AOP50, and AOP70). AOP30 had the lowest molecular weight of 11.07 kDa and mainly consisted of glucose (89.88%). The half inhibitory concentration (IC50) value of AOP30 and AOP70 was lower than that of AOP50 in the ability to scavenge the ABTS radical, while a reverse trend was observed in reducing ferric ions. Notably, the antioxidant activities of AOPs were highly correlated with their polydispersity index (Mw/Mn) and Zeta potential. AOP30, a negatively charged acidic polysaccharide fraction, exhibited electron donating capacities. Additionally, it displayed strong antioxidant abilities through scavenging 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radicals and reducing ferric ions. In conclusion, the present study suggests that AOP30 could be developed as an antioxidant ingredient for the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.J.); (G.L.); (Y.H.); (Z.L.); (X.L.); (Z.W.); (R.L.); (B.S.)
| |
Collapse
|
4
|
Luo Z, Xu Y, Qiu L, Lv S, Zeng C, Tan A, Ou D, Song X, Yang J. Optimization of ultrasound-assisted extraction based on response surface methodology using HPLC-DAD for the analysis of red clover ( Trifolium pretense L.) isoflavones and its anti-inflammatory activities on LPS-induced 3D4/2 cell. Front Vet Sci 2023; 10:1279178. [PMID: 37854095 PMCID: PMC10580807 DOI: 10.3389/fvets.2023.1279178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Trifolium pratense L. has anti-inflammatory, antioxidant, cardiovascular disease prevention, and estrogen-like effects. The existing method for the assay of effective components is commonly based on a spectrophotometer, which could not meet the requirement of quality control. Furthermore, although there have been many studies on the anti-inflammation effect of red clover, a few have been reported on the regulatory effect of red clover isoflavones (RCI) on lipopolysaccharide (LPS)-induced inflammatory response in porcine alveolar macrophages (3D4/2 cells), and its mechanism of action is still unclear. Methods The main components of RCI including daidzein, genistein, and biochanin A were accurately quantified by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) after optimizing the extraction process through response surface methodology. The anti-inflammatory potential of RCI was carried out by detecting the level of inflammatory cytokines and mRNA expression of related genes. Furthermore, its anti-inflammatory mechanism was explored by investigating two signaling pathways (NF-κB and MAPK). Results The optimal extraction conditions of RCI were as follows: the concentration of ethanol is 86% and the solid-liquid ratio is 1:29, with the herb particle size of 40 mesh sieve. Under the optimal conditions, the total extraction of target components of RCI was 2,641.469 μg/g. The RCI could significantly suppress the production and expression of many pro-inflammatory cytokines. The results of the Western blot revealed that RCI dramatically reduced the expression of p65, p-p65, IκB-α, p38, and p-p38. These results are associated with the suppression of the signal pathway of p38 MAPK, and on the contrary, activating the NF-κB pathway. Collectively, our data demonstrated that RCI reversed the transcription of inflammatory factors and inhibited the expression of p65, p-p65, IκB-α, and p38, indicating that RCI had excellent anti-inflammatory properties through disturbing the activation of p38 MAPK and NF-κB pathways. Conclusion The extraction conditions of RCI were optimized by HPLC-DAD combined with response surface methodology, which will contribute to the quality control of RCI. RCI had anti-inflammatory effects on the LPS-induced 3D4/2 cells. Its mechanism is to control the activation of NF-κB and p38 MAPK pathways, thereby reducing the expression of inflammatory-related genes and suppressing the release of cytokines.
Collapse
Affiliation(s)
- Zhengqin Luo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Yidan Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Longxin Qiu
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology in Fujian Province, Longyan University, Longyan, Fujian, China
| | - Shiming Lv
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Zeng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Aijuan Tan
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Li X, Wichai N, Wang J, Liu X, Yan H, Wang Y, Luo M, Zhou S, Wang K, Li L, Miao L. Regulation of innate and adaptive immunity using herbal medicine: benefits for the COVID-19 vaccination. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:196-206. [PMID: 37808346 PMCID: PMC9746255 DOI: 10.1097/hm9.0000000000000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 08/18/2023]
Abstract
Vaccination is a major achievement that has become an effective prevention strategy against infectious diseases and active control of emerging pathogens worldwide. In response to the coronavirus disease 2019 (COVID-19) pandemic, several diverse vaccines against severe acute respiratory syndrome coronavirus 2 have been developed and deployed for use in a large number of individuals, and have been reported to protect against symptomatic COVID-19 cases and deaths. However, the application of vaccines has a series of limitations, including protective failure for variants of concern, unavailability of individuals due to immune deficiency, and the disappearance of immune protection for increasing infections in vaccinated individuals. These aspects raise the question of how to modulate the immune system that contributes to the COVID-19 vaccine protective effects. Herbal medicines are widely used for their immune regulatory abilities in clinics. More attractively, herbal medicines have been well accepted for their positive role in the COVID-19 prevention and suppression through regulation of the immune system. This review presents a brief overview of the strategy of COVID-19 vaccination and the response of the immune system to vaccines, the regulatory effects and mechanisms of herbal medicine in immune-related macrophages, natural killer cells, dendritic cells, and lymphocytes T and B cells, and how they help vaccines work. Later in the article, the potential role and application of herbal medicines in the most recent COVID-19 vaccination are discussed. This article provides new insights into herbal medicines as promising alternative supplements that may benefit from COVID-19 vaccination. Graphical abstract http://links.lww.com/AHM/A31.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nuttapong Wichai
- Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
| | - Jiabao Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuping Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huimin Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyuan Zhou
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kai Wang
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Dong C, Zhao G, Tao L, Qiu F, Wang S, Wang B, Liu J, Duan S. Antioxidant Interactions between S-allyl-L-cysteine and Polyphenols Using Interaction Index and Isobolographic Analysis. Molecules 2022; 27:molecules27134089. [PMID: 35807335 PMCID: PMC9268411 DOI: 10.3390/molecules27134089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
This work aims to study the antioxidant interactions between S-allyl-L-cysteine (SAC) and six natural polyphenols (quercetin, caffeic acid, sinapic acid, catechin, ferulic acid, and 3,4-dihydroxybenzoic acid) through the measurement of free-radical-scavenging activity of 1,1-diphenyl- 2-picryl-hydrazyl (DPPH), the radical-cation-scavenging activity of 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and reducing power. Among the six natural polyphenols, caffeic acid showed the strongest synergistic effect with SAC according to DPPH and reducing power assays. Further investigations based on the results of interaction index and isobologram analysis showed that the antioxidant activity (DPPH, ABTS, and reducing power) of the combination of caffeic acid with SAC presented an increase with the raising of their individual concentrations in their mixture and along with a dose–response manner. The best synergistic effect between caffeic acid and SAC based on DPPH, ABTS, and reducing power assays were observed at the ratio of 1:20, 1:35, and 1:70, respectively. The excellent synergic antioxidant activity of the combination of caffeic acid with SAC in our study suggests SAC has a more broad and effective application prospects in food field.
Collapse
Affiliation(s)
- Chunming Dong
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Guihong Zhao
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (G.Z.); (L.T.); (F.Q.); (S.W.); (B.W.)
| | - Lei Tao
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (G.Z.); (L.T.); (F.Q.); (S.W.); (B.W.)
| | - Fanghang Qiu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (G.Z.); (L.T.); (F.Q.); (S.W.); (B.W.)
| | - Shujing Wang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (G.Z.); (L.T.); (F.Q.); (S.W.); (B.W.)
| | - Bo Wang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (G.Z.); (L.T.); (F.Q.); (S.W.); (B.W.)
| | - Jian Liu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (G.Z.); (L.T.); (F.Q.); (S.W.); (B.W.)
- Correspondence: (J.L.); (S.D.)
| | - Shengxia Duan
- College of Chemisty and Chemical Engineering, Heze University, Heze 274000, China
- Correspondence: (J.L.); (S.D.)
| |
Collapse
|
7
|
Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 2022; 202:494-507. [PMID: 35045346 DOI: 10.1016/j.ijbiomac.2022.01.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
This overview highlighted the in vitro and in vivo antitumor effects of polysaccharides extracted by ultrasound- and microwave-assisted solvent extraction methods. The polysaccharide fragments with stronger antiproliferation, antitumoral, and anticarcinoma effects can be identified through purification, fractionation, and bio-analytical assessments. Most of the extracted glucan-based polysaccharides in a dose-dependent manner inhibited the growth of human cancer cell types with cell death-associated morphological changes. Glucans, glucogalactans, and pectins without any cytotoxicity on normal cells showed the antitumor potential by the apoptosis induction and the inhibition of their tumorigenesis, metastasis, and transformation. There is a significantly high association among antiproliferative activities, structural features (e.g., molecular weight, monosaccharide compositions, and contents of sulfate, selenium, and uronic acid), and other bio-functionalities (e.g., antiradical and antioxidant) of isolated polysaccharides. The evaluation of structure-activity relationships of antitumor polysaccharides is an intriguing step forward to develop highly potent anticancer pharmaceuticals and foods without any side effects.
Collapse
|
8
|
Zhang Y, Yu L, Jin W, Li C, Wang Y, Wan H, Yang J. Simultaneous Optimization of the Ultrasonic Extraction Method and Determination of the Antioxidant Activities of Hydroxysafflor Yellow A and Anhydrosafflor Yellow B from Safflower Using a Response Surface Methodology. Molecules 2020; 25:molecules25051226. [PMID: 32182800 PMCID: PMC7179454 DOI: 10.3390/molecules25051226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/01/2022] Open
Abstract
An evaluation of the ultrasonic extraction process and the antioxidant activities of hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) from safflower are presented herein. Using response surface methodology (RSM), based on a four-factor-three-level Box–Behnken design (BBD), the extraction parameters, namely, temperature, extraction time, solvent-to-material ratio, and extraction power, were optimized for maximizing the yields of HSYA and AHSYB. The maximum yield was obtained at a temperature of 66 °C with an extraction time of 36 min, solvent-to-material ratio of 16 mL/g, and the extraction power of 150 W, which was adjusted according to the actual conditions. The HSYA and AHSYB contents were determined using high performance liquid chromatography (HPLC). The yield and the comprehensive evaluation value of HSYA and AHSYB were calculated. The antioxidant activities of the extracts were determined using a ferric reducing antioxidant power (FRAP) kit and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The results suggested that the safflower extracts possessed obvious ferric reducing and DPPH radical scavenging activities. The antioxidant activity increased with increasing concentration. The results suggested that optimizing the conditions of ultrasonic extraction using RSM can significantly increase the yields of HSYA and AHSYB from safflower. The safflower extracts showed better antioxidant activity. This study can encourage future research on cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yangyang Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; (Y.Z.); (L.Y.); (C.L.); (Y.W.)
| | - Li Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; (Y.Z.); (L.Y.); (C.L.); (Y.W.)
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China;
| | - Chang Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; (Y.Z.); (L.Y.); (C.L.); (Y.W.)
| | - Yu Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; (Y.Z.); (L.Y.); (C.L.); (Y.W.)
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; (Y.Z.); (L.Y.); (C.L.); (Y.W.)
- Correspondence: (H.W.); (J.Y.)
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
- Correspondence: (H.W.); (J.Y.)
| |
Collapse
|
9
|
Optimization of Ultrasound-Assisted Extraction of Flavonoids from Celastrus hindsii Leaves Using Response Surface Methodology and Evaluation of Their Antioxidant and Antitumor Activities. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3497107. [PMID: 32337241 PMCID: PMC7155760 DOI: 10.1155/2020/3497107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Celastrus hindsii is a potential source of flavonoids with biological activities. This study aimed to develop an ultrasound-assisted technique for extracting flavonoids from leaves of C. hindsii. Response surface methodology was employed to optimize the extraction conditions for maximizing the total flavonoid content (TFC). A maximum TFC of 23.6 mg QE/g was obtained under the extraction conditions of ultrasonic power of 130 W, extraction temperature of 40°C, extraction time of 29 min, and ethanol concentration of 65%. The flavonoid-rich extracts were then studied for their antioxidant and anticancer activities. The results showed that the C. hindsii leaf extract exhibited potent radical scavenging activities against DPPH (IC50 of 164.85 μg/mL) and ABTS (IC50 of 89.05 μg/mL). The extract also significantly inhibited the growth of 3 cancer cell lines MCF7, A549, and HeLa with the IC50 values of 88.1 μg/mL, 120.4 μg/mL, and 118.4 μg/mL, respectively. Notably, the extract had no cytotoxicity effect on HK2 normal kidney cell line. This study suggests that flavonoid-rich extract is a promising antioxidant and anticancer agent and that ultrasound-assisted extraction is an efficient method for extracting flavonoids from C. hindsii leaves.
Collapse
|
10
|
Jia X, Zhang C, Bao J, Wang K, Tu Y, Wan JB, He C. Flavonoids from Rhynchosia minima root exerts anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathway. Inflammopharmacology 2019; 28:289-297. [DOI: 10.1007/s10787-019-00632-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
|
11
|
Xu Z, Wang B, Fu L, Wang H, Liu J, Zhou L, Yuan M, Ding C. Optimization Extraction, Purification and Antioxidant Activities of Polysaccharides from Penthorum Chinense Pursh. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPenthorum chinense Pursh is a well-known traditional Chinese medicine, however, little attention has been paid to the polysaccharides of P. chinense (PCP). Therefore, it is great significance to investigate the characteristics and activities of PCP. In this study, response surface methodology was applied to optimize the extraction parameters of PCP. Then, two polysaccharides fractions (PCP-1 and PCP-2) were purified from PCP by using DEAE-52 chromatography, and there preliminary chemical properties and in vitro antioxidant activities were investigated. Results revealed that the optimum extraction conditions of PCP were identified as follow: ratio of water to raw material 20.6 mL/g; extraction time 3.5 h and extraction temperature 85°C. Based on these conditions, the maximum yield of PCP was 3.12% ± 0.19%. Purified fractions PCP-1 and PCP-2 were all acidic heteropolysaccharides, and PCP-1 mainly consisted of galactose and arabinose while PCP-2 mainly consisted of rhamnose, galacturonic acid, galactose and arabinose. Moreover, PCP-2 exhibited stronger scavenging activities against DPPH radical, hydroxyl radical and superoxide anion radical and chelating activity on Fe2+in vitro.
Collapse
Affiliation(s)
- Zhou Xu
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014, P. R. China
| | - Bulei Wang
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014, P. R. China
| | - Liang Fu
- Dazhou Institute of Agricultural Sciences, Da’zhou635000, P. R. China
| | - Handong Wang
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014, P. R. China
| | - Jing Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014, P. R. China
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014, P. R. China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014, P. R. China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014, P. R. China
| |
Collapse
|
12
|
Han QH, Liu W, Li HY, He JL, Guo H, Lin S, Zhao L, Chen H, Liu YW, Wu DT, Li SQ, Qin W. Extraction Optimization, Physicochemical Characteristics, and Antioxidant Activities of Polysaccharides from Kiwifruit ( Actinidia chinensis Planch.). Molecules 2019; 24:E461. [PMID: 30696067 PMCID: PMC6384800 DOI: 10.3390/molecules24030461] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 02/01/2023] Open
Abstract
In order to evaluate effects of extraction techniques on the physicochemical characteristics and antioxidant activities of kiwifruit polysaccharides (KPS), and further explore KPS as functional food ingredients, both microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) were optimized for the extraction of KPS. Furthermore, the physicochemical structures and antioxidant activities of KPS extracted by different techniques were investigated. The optimal extraction conditions of UAE and MAE for the extraction of KPS were obtained by response surface methodology. Different extraction techniques significantly affected the contents of uronic acids, molecular weights, molar ratios of constituent monosaccharides, and the degree of esterification of KPS. Results showed that KPS exhibited remarkable DPPH and ABTS radical scavenging activities, and reducing power. The high antioxidant activities observed in KPS extracted by the MAE method (KPS-M) might be partially attributed to its low molecular weight and high content of unmethylated galacturonic acid. Results suggested that the MAE method could be a good potential technique for the extraction of KPS with high antioxidant activity, and KPS could be further explored as functional food ingredients.
Collapse
Affiliation(s)
- Qiao-Hong Han
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hong-Yi Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jing-Liu He
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Huan Guo
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shang Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Li Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yao-Wen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Ding-Tao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shu-Qing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
13
|
Zhou J, Zhang L, Li Q, Jin W, Chen W, Han J, Zhang Y. Simultaneous Optimization for Ultrasound-Assisted Extraction and Antioxidant Activity of Flavonoids from Sophora flavescens Using Response Surface Methodology. Molecules 2018; 24:E112. [PMID: 30597974 PMCID: PMC6337616 DOI: 10.3390/molecules24010112] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/30/2022] Open
Abstract
The ultrasonic-assisted extraction process and antioxidant activity of flavonoids from Sophora flavescens were investigated in this study. In order to optimize the extraction of flavonoids from Sophora flavescens, the influence of extraction time, methanol concentration, ultrasonic temperature, and solvent-to-material ratio was analyzed. Results showed that the extraction yields reached a maximum with the extraction time of 30 min, methanol concentration of 80%, temperature of 80 °C, and solvent-to-material ratio of 26 mL/g. The flavonoids were determined by HPLC, and the mean yields of trifolirhizin, formononetin, isoxanthohumol, maackiain, and kurarinone under the optimal conditions were 2.570, 0.213, 0.534, 0.797, and 3.091 mg/g, respectively. The evaluation of vitro antioxidant activity exhibited Sophora flavescens flavonoids had a strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging ability with IC50 of 0.984 and 1.084 mg/g, respectively. These results indicate that ultrasonic-assisted extraction is an efficient approach for the selective extraction of flavonoids, and response surface methodology further optimized the extraction.
Collapse
Affiliation(s)
- Jing Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China.
| | - Lincheng Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China.
| | - Qinping Li
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China.
| | - Weifeng Jin
- College of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China.
| | - Weiyan Chen
- College of Basic medical, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China.
| | - Jin Han
- College of Basic medical, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China.
| | - Yuyan Zhang
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
14
|
Enzymatic Extraction, Purification, and Characterization of Polysaccharides from Penthorum chinense Pursh: Natural Antioxidant and Anti-Inflammatory. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3486864. [PMID: 30598992 PMCID: PMC6288581 DOI: 10.1155/2018/3486864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Penthorum chinense Pursh (PCP) is a kind of functional food or medicine for liver protection. In the present work, Plackett-Burman design, steepest ascent method, and response surface methodology (RSM) were employed to obtain maximum total sugar yield. The experimental yield of 6.91% indicated a close agreement with the predicted yield of 7.00% of the model under optimized conditions. The major polysaccharide fraction (PCPP-1a) from PCPP was purified and identified as acidic polysaccharides with a high content of uronic acid (FT-IR, UV, HPGPC). PCPP had similar monosaccharide profile with PCPP-1a but was rich in galacturonic acid (HPLC). Both of PCPP and PCPP-1a possessed strong hydroxyl radical scavenging, DPPH radical scavenging, and Fe2+ chelating activities. Moreover, they were revealed to show strong anti-inflammatory activities by inhibiting NO, TNF-α, and IL-1β release compared to LPS treatment in RAW264.7 cells. These data suggest that the polysaccharides from PCP could be potential natural products for treating ROS and inflammatory-related diseases.
Collapse
|
15
|
Jia X, Liang Y, Zhang C, Wang K, Tu Y, Chen M, Li P, Wan JB, He C. Polysaccharide PRM3 from Rhynchosia minima root enhances immune function through TLR4-NF-κB pathway. Biochim Biophys Acta Gen Subj 2018; 1862:1751-1759. [DOI: 10.1016/j.bbagen.2018.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/29/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
|
16
|
Awadasseid A, Hou J, Gamallat Y, Xueqi S, Eugene KD, Musa Hago A, Bamba D, Meyiah A, Gift C, Xin Y. Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus Versicolor. PLoS One 2017; 12:e0171270. [PMID: 28178285 PMCID: PMC5298263 DOI: 10.1371/journal.pone.0171270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/17/2017] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of deaths worldwide. Herein, we report an efficient natural anticancer glucan (CVG) extracted from Coriolus Versicolar (CV). CVG was extracted by the hot water extraction method followed by ethanol precipitation and purified using gas exclusion chromatography. Structural analysis revealed that CVG has a linear α-glucan chain composed of only (1→ 6)-α-D-Glcp. The antitumor activity of CVG on Sarcoma-180 cells was investigated in vitro and in vivo. Mice were treated with three doses of CVG (40, 100, 200 mg/kg body weight) for 9 days. Tumor weight, relative spleen, thymus weight, and lymphocyte proliferation were studied. A significant increase (P< 0.01) in relative spleen and thymus weight and a decrease (P< 0.01) in tumor weight at the doses of 100 and 200 mg/kg were observed. The results obtained demonstrate CVG has antitumor activity towards Sarcoma-180 cells by its immunomodulation activity.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
- Department of Biochemistry and Molecular Biology, Northeast Normal University, Changchun, P.R. China
- Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid, The Republic of Sudan
| | - Jie Hou
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Yaser Gamallat
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Shang Xueqi
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Kuugbee D. Eugene
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Ahmed Musa Hago
- Department of pathology and pathophysiology, Dalian Medical University, Dalian, P.R. China
| | - Djibril Bamba
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Abdo Meyiah
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Chiwala Gift
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
- * E-mail:
| |
Collapse
|
17
|
α-Glucosidase inhibitory activity and structural characterization of polysaccharide fraction from Rhynchosia minima root. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|