1
|
Mahmood NMS, Mahmud AMR, Maulood IM. Vascular actions of Ang 1-7 and Ang 1-8 through EDRFs and EDHFs in non-diabetes and diabetes mellitus. Nitric Oxide 2025; 156:9-26. [PMID: 40032212 DOI: 10.1016/j.niox.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in regulating vascular homeostasis, while angiotensin 1-8 (Ang 1-8) traditionally dominates as a vasoconstrictor factor. However, the discovery of angiotensin 1-7 (Ang 1-7) and Ang 1-8 has revealed counter-regulatory mechanisms mediated through endothelial-derived relaxing factors (EDRFs) and endothelial-derived hyperpolarizing factors (EDHFs). This review delves into the vascular actions of Ang 1-7 and Ang 1-8 in both non-diabetes mellitus (non-DM) and diabetes mellitus (DM) conditions, highlighting their effects on vascular endothelial cell (VECs) function as well. In a non-DM vasculature context, Ang 1-8 demonstrate dual effect including vasoconstriction and vasodilation, respectively. Additionally, Ang 1-7 induces vasodilation upon nitric oxide (NO) production as a prominent EDRFs in distinct mechanisms. Further research elucidating the precise mechanisms underlying the vascular actions of Ang 1-7 and Ang 1-8 in DM will facilitate the development of tailored therapeutic interventions aimed at preserving vascular health and preventing cardiovascular complications.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Sahinturk S. Cilostazol induces vasorelaxation through the activation of the eNOS/NO/cGMP pathway, prostanoids, AMPK, PKC, potassium channels, and calcium channels. Prostaglandins Other Lipid Mediat 2023; 169:106782. [PMID: 37741358 DOI: 10.1016/j.prostaglandins.2023.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE This study aimed to investigate vasoactive effect mechanisms of cilostazol in rat thoracic aorta. MATERIALS AND METHODS The vessel rings prepared from the thoracic aortas of the male rats were placed in the chambers of the isolated tissue bath system. The resting tone was adjusted to 1 g. Following the equilibration phase, potassium chloride or phenylephrine was used to contract the vessel rings. When achieving a steady contraction, cilostazol was applied cumulatively (10-8-10-4 M). In the presence of potassium channel blockers or signaling pathway inhibitors, the same experimental procedure was performed. RESULTS Cilostazol exhibited a significant vasorelaxant effect in a concentration-dependent manner (pD2: 5.94 ± 0.94) (p < .001). The vasorelaxant effect level of cilostazol was significantly reduced by the endothelial nitric oxide synthase inhibitor L-NAME (10-4 M), soluble guanylate cyclase inhibitor methylene blue (10 µM), cyclooxygenase 1/2 inhibitor indomethacin (5 µM), adenosine monophosphate-activated protein kinase inhibitor compound C (10 µM), non-selective potassium channel blocker tetraethylammonium chloride (10 mM), large-conductance calcium-activated potassium channel blocker iberiotoxin (20 nM), voltage-gated potassium channel blocker 4-Aminopyridine (1 mM), and inward-rectifier potassium channel blocker BaCl2 (30 µM) (p < .001). Moreover, incubation of cilostazol (10-4 M) significantly reduced caffeine (10 mM), cyclopiazonic acid (10 µM), and phorbol 12-myristate 13-acetate-induced (100 µM) vascular contractions (p < .001). CONCLUSIONS In the rat thoracic aorta, the vasodilator action level of cilostazol is quite noticeable. The vasorelaxant effects of cilostazol are mediated by the eNOS/NO/cGMP pathway, prostanoids, AMPK pathway, PKC, potassium channels, and calcium channels.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Bursa Uludag University Medicine School, Physiology Department, 16059, Bursa, Turkey.
| |
Collapse
|
3
|
Verma K, Shukla R, Dwivedi J, Paliwal S, Sharma S. New insights on mode of action of vasorelaxant activity of simvastatin. Inflammopharmacology 2023; 31:1279-1288. [PMID: 37038017 DOI: 10.1007/s10787-023-01219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Simvastatin is a semisynthetic inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and is used extensively to treat atherosclerotic cardiovascular disease. Apart from the lipid-lowering effect, simvastatin has been documented to offer impressive vasorelaxant activity. However, the mechanism associated with this vasorelaxant activity has yet not been substantially explored. Thus, the present study has aimed to elucidate the mechanism(s) associated with simvastatin-induced vasorelaxation using an established rat aortic ring model. The results from the study depicted that simvastatin caused significant relaxation in aortic rings pre-contracted with phenylephrine and potassium chloride (KCl). The vasorelaxant effect of simvastatin was attenuated by methylene blue (sGC-dependent cyclic guanosine monophosphate (cGMP) inhibitor), NG-nitro-L-arginine methyl ester (L-NAME; NO synthase inhibitor), 4-aminopyridine (Kv blocker), glibenclamide (KATP blocker), and barium chloride (Kir blocker). In addition, the vasorelaxant effect of simvastatin was slightly reduced by PD123319 (angiotensin II type 2 receptor (AT2R) antagonist). However, indomethacin (COX inhibitor), 1H-[1,2,4]Ox adiazolol [4,3-α]quinoxalin-1-one (ODQ; selective soluble guanylate cyclase (sGC) inhibitor), losartan (angiotensin II type 1 receptor (AT1R) antagonist), atropine (muscarinic receptor blocker), and tetraethyl ammonium (TEA; KCa blocker) did not affect the vasorelaxant effect of simvastatin. Furthermore, simvastatin was found to attenuate the release of calcium (Ca2+) from intracellular stores in the presence of ruthenium red (ryanodine receptor, RyR inhibitor) and extracellular stores via nifedipine (voltage-operated Ca2+ channels, VOCC blocker) and SK&F96365 (receptor-operated Ca2+ channel, ROCC blocker). Thus, it can be concluded that the vasorelaxant effect of simvastatin involves NO/cGMP pathways, AT2R receptors, Ca2+ channels, and K+ channels.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
| |
Collapse
|
4
|
Loh YC, Oo CW, Tew WY, Wen X, Wei X, Yam MF. The predominance of endothelium-derived relaxing factors and beta-adrenergic receptor pathways in strong vasorelaxation induced by 4-hydroxybenzaldehyde in the rat aorta. Biomed Pharmacother 2022; 150:112905. [PMID: 35421787 DOI: 10.1016/j.biopha.2022.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022] Open
Abstract
4-hydroxybenzaldehyde (4HB), known as ρ-hydroxybenzaldehyde, is commonly present in traditional Chinese medicine herb, most frequently used for hypertension treatment. This research aims to determine the potency of 4HB's vasorelaxant action. In the study, the vasodilation effect of 4HB was evaluated using in vitro isolated rat aortic rings assay. The aortic rings were pre-incubated with respective antagonists before being pre-contracted with phenylephrine (PE) and challenged with various concentrations of 4HB for mechanistic action studies. Rmax (maximal vasodilation) and pEC50 (negative logarithm of half-maximal effective concentration) values of each experiment were determined for comparison purposes. 4HB caused vasodilation on endothelium-intact aortic rings which pre-contracted with PE (pEC50 = 3.53 ± 0.05, Rmax = 100.95 ± 4.25%) or potassium chloride (pEC50 = 2.96 ± 0.13, Rmax = 72.13 ± 4.93%). The vasodilation effect of 4HB was significantly decreased in the absence of an endothelium (pEC50 = 2.21 ± 0.25, Rmax = 47.96 ± 4.16%). The atropine, 4-aminopyridine, Nω-nitro-L-arginine methyl ester, glibenclamide, and propranolol significantly reduced the vasorelaxation effect of 4HB. Besides that, 4HB blocked the voltage-operated calcium channel (VOCC) and regulated the intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the aortic ring. Thus, the results indicated that 4HB exerted its vasodilatory effect via cGMP and β2 pathways, M3-dependent PLC/IP3 pathways, and potassium and calcium channels.
Collapse
Affiliation(s)
- Yean Chun Loh
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Organic Chemistry, School of Chemical Sciences, UniversitiSains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, UniversitiSains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Wan Yin Tew
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Xu Wen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China
| | - Xu Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China
| | - Mun Fei Yam
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
5
|
Sahinturk S, Demirel S, Isbil N, Ozyener F. Potassium Channels Contributes to Apelin-induced Vasodilation in Rat
Thoracic Aorta. Protein Pept Lett 2022; 29:538-549. [DOI: 10.2174/0929866529666220516141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
Background:
Apelin is a newly discovered peptide hormone and originally discovered
endogenous apelin receptor ligand.
Objective:
In this study, we aimed to investigate the possible roles of potassium channel subtypes in
the vasorelaxant effect mechanisms of apelin.
Methods:
The vascular rings obtained from the thoracic aortas of the male Wistar Albino rats were
placed into the isolated tissue bath system. The resting tension was set to 2 g. After the equilibration
period, the aortic rings were precontracted with 10-5 M phenylephrine (PHE) or 45 mM KCl.
Pyroglutamyl-apelin-13 ([Pyr1]apelin-13), which is the dominant apelin isoform in the human
cardiovascular tissues and human plasma, was applied cumulatively (10-10-10-6 M) to the aortic
rings in the plateau phase. The experimental protocol was repeated in the presence of specific K+
channel subtype blockers to determine the role of K+ channels in the vasorelaxant effect
mechanisms of apelin.
Results:
[Pyr1]apelin-13 induced a concentration-dependent vasorelaxation (p < 0.001). The
maximum relaxation level was approximately 52%, according to PHE-induced contraction.
Tetraethylammonium, iberiotoxin, 4-Aminopyridine, glyburide, anandamide, and BaCl2 statistically
significantly decreased the vasorelaxant effect level of [Pyr1]apelin-13 (p < 0.001). However,
apamin didn’t statistically significantly change the vasorelaxant effect level of [Pyr1]apelin-13.
Conclusion:
In conclusion, our findings suggest that BKCa, IKCa, Kv, KATP, Kir, and K2P channels
are involved in the vasorelaxant effect mechanisms of apelin in the rat thoracic aorta.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Sadettin Demirel
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Naciye Isbil
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Fadil Ozyener
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| |
Collapse
|
6
|
Tan CS, Tew WY, Jingying C, Yam MF. Vasorelaxant effect of 5,7,4'- Trihydroxyflavanone (Naringenin) via endothelium dependent, potassium and calcium channels in Sprague Dawley rats: Aortic ring model. Chem Biol Interact 2021; 348:109620. [PMID: 34411564 DOI: 10.1016/j.cbi.2021.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/24/2020] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
Naringenin is a naturally occurring flavanone (flavonoid) known to have bioactive effects on human health. It has been reported to show cardiovascular effects. This study aimed to investigate the possible vasorelaxant effect of naringenin and the mechanism behind it by using a Sprague Dawley rat aortic ring assay model. Naringenin caused significant vasorelaxation of endothelium-intact aortic rings precontracted with phenylephrine (pD2 = 4.27 ± 0.05; Rmax = 121.70 ± 4.04%) or potassium chloride (pD2 = 4.00 ± 0.04; Rmax = 103.40 ± 3.82%). The vasorelaxant effect decreased in the absence of an endothelium (pD2 = 3.34 ± 0.10; Rmax = 62.29 ± 2.73%). The mechanisms of the vasorelaxant effect of naringenin in the presence of antagonists were also investigated. Indomethacin, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, atropine, 4-aminopyridine, Nω-nitro-l-arginine methyl ester, glibenclamide and propranolol significantly reduced the relaxation stimulated by naringenin in the presence of endothelium. Besides that, the effect of naringenin on the voltage-operated calcium channel (VOCC) in the endothelium-intact aortic ring was studied, as was intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the endothelium-denuded aortic ring. The results showed that naringenin also significantly blocked the entry of Ca2+ via the VOCC, SERCA/SOCC and suppressed the release of Ca2+ from the SR. Thus, the vasorelaxant effect shown by naringenin mostly involve the COX pathway, the endothelium-dependent pathway via NO/sGC/prostaglandin, calcium and potassium channels.
Collapse
Affiliation(s)
- Chu Shan Tan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Wan Yin Tew
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chen Jingying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China.
| | - Mun Fei Yam
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
7
|
Loh YC, Chan SY, Oo CW, Yam MF. Discovery of trans-3,4,4'-trihydroxystilbene as new lead vasorelaxant agent for antihypertensive drug development. Life Sci 2021; 278:119560. [PMID: 33915131 DOI: 10.1016/j.lfs.2021.119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022]
Abstract
AIMS The structure-vasorelaxant activity relationships (SARs) assessment in previous study has found that trans-3,4,4'-trihydroxystilbene (344OH) could potentially act as a vasorelaxing agent with demonstration of over 2-fold maximal relaxation (Rmax) compared to its analogue, resveratrol. The present study focuses on the mechanism of actions and pathways employed by 344OH and compared to its analogue to further speculate the SAR of stilbenoids towards vasorelaxation. MATERIALS AND METHODS The 344OH employed in present study was synthesized based on the protocol in previous study. The vascular responses towards the cumulative addition of 344OH were evaluated using in vitro rat aortic rings assays. KEY FINDINGS The pEC50 and Rmax values were found to be 4.33 ± 0.05 and 106 ± 3.99%, respectively. Results showed that the vasorelaxation of 344OH were predominated by G-protein-coupled muscarinic- (M3) and β2-adrenergic receptors, followed by PGI2/AC/cAMP- and NO/sGC/cGMP-dependent pathways. It was also identified that 344OH employed voltage-activated- (Kv), calcium-activated- (Kca) and inwardly-rectifying (Kir) potassium channels and act as an antagonist for both VOCC and IP3R while regulating the action potential in the vasculature. SIGNIFICANCE The different position of hydroxyl substituent located in A-ring of the stilbenoid backbone in 344OH compared to resveratrol resulted in a significant difference in mechanistic actions that lead to 344OH's fast-acting and less time-dependent vasorelaxation behaviour. This has substantially increased the potential of 344OH to be developed as an effective antihypertensive drug in future. Present findings further strengthen our inferences where the SARs study approach should be carried out as the mainstream methodology in future drug development research.
Collapse
Affiliation(s)
- Yean Chun Loh
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Sock Ying Chan
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyanng Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China.
| |
Collapse
|
8
|
Mehanna M, Chen YE, Gong Y, Handberg E, Roth B, De Leon J, Smith SM, Harrell JG, Cooper-DeHoff RM. Optimizing Precision of Hypertension Care to Maximize Blood Pressure Control: A Pilot Study Utilizing a Smartphone App to Incorporate Plasma Renin Activity Testing. Clin Transl Sci 2020; 14:617-624. [PMID: 33142006 PMCID: PMC7993275 DOI: 10.1111/cts.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Only half of patients with hypertension (HTN) respond to any given antihypertensive medication. Heterogeneity in pathophysiologic pathways underlying HTN is a major contributor. Personalizing antihypertensive therapy could improve blood pressure (BP) reduction. The objective of this study was to assess the effect of pragmatic implementation of a personalized plasma renin activity (PRA)‐based smartphone app on improving BP reduction. Patients with untreated or treated but uncontrolled HTN were recruited. BP and PRA were measured at baseline with final BP measured at 6 months. Patient’s information was entered into the app and treatment recommendations were returned. Clinicians were at liberty to follow or disregard the app’s recommendations. BP levels and percent BP control among patients whose clinicians did and did not follow the app’s recommendations were compared using independent t‐test and Fisher’s exact test, respectively. Twenty‐nine European American patients were included (38% women) with mean age of 52 ± 9 years and median PRA of 1.3 ng/mL/hr (interquartile range 0.5–3.1 ng/mL/hr). Participants whose clinicians followed the app’s recommendations (n = 16, 55%) as compared with those whose clinicians did not (n = 13, 45%), had a greater reduction in 6‐month systolic BP (−15 ± 21 vs. −3 ± 21 mm Hg; adjusted‐P = 0.1) and diastolic BP (−8 ± 8 vs. −1 ± 8 mm Hg; adjusted‐P = 0.04). BP control at 6 months tended to be greater among patients whose clinicians accepted the app’s recommendations vs. those whose clinicians did not (63% vs. 23%, P = 0.06). This pilot study demonstrates that acceptance of the app’s recommendations was associated with a greater BP reduction. Future studies to confirm these pilot findings are warranted.
Collapse
Affiliation(s)
- Mai Mehanna
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Yiqing E Chen
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Eileen Handberg
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brittney Roth
- Department of Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jessica De Leon
- Division of Research & Graduate Programs, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Steven M Smith
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jonathan G Harrell
- Department of Community Health & Family Medicine, University of Florida, Gainesville, Florida, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Loh YC, Chan SY, Tew WY, Oo CW, Yam MF. New flavonoid-based compound synthesis strategy for antihypertensive drug development. Life Sci 2020; 249:117512. [PMID: 32145305 DOI: 10.1016/j.lfs.2020.117512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022]
Abstract
Hypertension is one of the leading causes of mortality in relation to the cardiovascular conditions and easily the most overlooked and poorly managed disease in mankind. With well over 200 drugs available in the market globally, there is still an urgency to search for antihypertensive alternatives due to the subpar efficacy and unwarranted side effects of the current choices. Present studies reported over 250 types of plant-derived compounds were being investigated for potential pharmacological effects on the vasculature in the last 3 decades. There were numerous literatures that claimed various compounds exhibiting vasorelaxant properties to a certain extent with low numbers of these compounds being successfully adapted into the current medicinal practice for treatment of hypertension. The issue is the scarcity of reviews that summarizes the discovery of this field and the lack of thorough comparison of these compounds to identify which of these vasodilators should be the next face of hypertension management. Thus, this review is aiming towards identifying the relationship between a major class of plant-derived compounds, flavonoid's activity as a vasodilator with their signalling pathways and their structural characteristics according to their vasorelaxant properties. Interestingly, we found that both nitric oxide and voltage-operated calcium channels pathways, and two of the flavonoid's structural characteristics play crucial roles in eliciting strong vasorelaxant effects. We have faith that the insights of this review will serve as a reference for those researching similar topics in the future and potentially lead to the development of more promising antihypertensive alternative.
Collapse
Affiliation(s)
- Yean Chun Loh
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Sock Ying Chan
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Wan Yin Tew
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
10
|
Vasorelaxant effect of 3,5,4'-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology 2020; 28:869-875. [PMID: 31925617 DOI: 10.1007/s10787-019-00682-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Resveratrol is found in numerous plant-based foods and beverages and is known to have an impact on the cardiovascular system. The aim of this study was to investigate the vasorelaxant effect of resveratrol and its underlying mechanisms by employing an aortic ring assay model. Resveratrol caused relaxation of aortic rings that had been precontracted with phenylephrine in the presence of endothelium or with potassium chloride in endothelium-intact aortic rings. The vasorelaxant effect was decreased in the absence of an endothelium. The mechanisms underlying the vasorelaxant effect of resveratrol were determined through the addition of antagonists. In the presence of the endothelium, indomethacin (a nonselective cyclooxygenase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, selective soluble guanylate cyclase inhibitor), Nω-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), tetraethylammonium (TEA, nonselective calcium activator potassium channel blocker), 4-aminopyridine (4-AP, voltage-dependent K+ channel blocker), barium chloride (BaCl2, inwardly rectifying K+ channel blocker), glibenclamide (non-specific ATP-sensitive K+ channel blocker) and propranolol (β-adrenergic receptor blocker) led to a significant reduction in the vasorelaxation effect induced by resveratrol. Resveratrol was also found to reduce Ca2+ release from the sarcoplasmic reticulum and block calcium channels. In conclusion, resveratrol targets multiple signalling pathways for exerting its vasorelaxant effects in the rat aortic ring model in both the presence and absence of endothelium.
Collapse
|
11
|
Tan CS, Loh YC, Ch'ng YS, Ng CH, Yeap ZQ, Ahmad M, Asmawi MZ, Yam MF. Vasorelaxant and chemical fingerprint studies of Citrus reticulatae pericarpium extracts. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:135-144. [PMID: 30543913 DOI: 10.1016/j.jep.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/16/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrus reticulatae Pericarpium (Chen pi) was widely used as an important ingredient in the prescription of TCM to treat phlegm fluid retention type hypertension. Since Chen pi is involved in treatment as antihypertensive TCM formula, we have reasonable expectation in believing that it might possess vasorelaxant activity. AIM OF THE STUDY This study is designed to investigate the vasorelaxant effect of Chen pi and to study its pharmacology effects. MATERIALS AND METHODS The vasorelaxant effect of water extract of Chen pi (CRW) were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. The fingerprint of Chen pi and the extracts were developed with quantification of hesperidin content by HPTLC. RESULTS CRW exhibited the strongest vasorelaxant activity. CRW caused the relaxation of the phenylephrine pre-contracted aortic rings in the presence and absence of endothelium as well as in potassium chloride pre-contracted endothelium-intact aortic ring. The incubation of propranolol (β-adrenergic receptor blocker), atropine (muscarinic receptor blocker), Nω-nitro-L-arginine methyl ester (NO synthase inhibitor), ODQ (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV blocker), barium chloride (Kir blocker), and glibenclamide (KATP blocker) significantly reduced the vasorelaxant effects of CRW. CRW was also found to be active in reducing Ca2+ releases from the sarcoplasmic reticulum and suppressing the voltage-operated calcium channels. CONCLUSION The vasorelaxant effect of CRW on rat aorta involves NO/sGC, calcium and potassium channels, muscarinic and β-adrenergic receptors.
Collapse
Affiliation(s)
- Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Yean Chun Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Yung Sing Ch'ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Chiew Hoong Ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Zhao Qin Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
12
|
Loh YC, Tan CS, Ch'ng YS, Ng CH, Yeap ZQ, Yam MF. Mechanisms of action of Panax notoginseng ethanolic extract for its vasodilatory effects and partial characterization of vasoactive compounds. Hypertens Res 2018; 42:182-194. [PMID: 30464217 DOI: 10.1038/s41440-018-0139-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
Panax notoginseng is the most valuable medicinal plant and has been used clinically for more than two thousand years to treat various diseases, including hypertension. Previous studies claimed that different isolated compounds from P. notoginseng are involved in different pathways for vasodilation. It is strongly believed that these vasodilating compounds might act synergistically in contributing vasodilatory effects via holistic signaling pathways. The present study aims to evaluate the vasodilatory effect and mechanism of action employed by the crude extract of P. notoginseng. The fingerprint of P. notoginseng was developed using tri-step FTIR and HPTLC. The contents of Rg1 and Rb1 in the active extract (PN95) were further quantified via HPTLC. The vasodilatory effect of PN95 was evaluated using an in vitro aortic ring model. The results showed that PN95 contains a high amount of Rg1 and Rb1, 25.9 and 13.6%, respectively. The vasodilatory effect of PN95 was elicited via the NO/sGC/cGMP and β2-adrenergic receptors pathways. Furthermore, PN95 could manage vascular tone by regulating action potentials via potassium and both VOCC and IP3R pathways. The results obtained fulfilled the expected outcome where the PN95 employed more signaling pathways than any of the single active compounds; hence, the holistic therapeutic effect could be achieved and would more easily translate to applications for the treatment of human diseases.
Collapse
Affiliation(s)
- Yean Chun Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yung Sing Ch'ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chiew Hoong Ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Zhao Qin Yeap
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
13
|
General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci 2018; 19:ijms19082164. [PMID: 30042373 PMCID: PMC6121522 DOI: 10.3390/ijms19082164] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Pain has been considered as a concept of sensation that we feel as a reaction to the stimulus of our surrounding, putting us in harm's way and acting as a form of defense mechanism that our body has permanently installed into its system. However, pain leads to a huge chunk of finances within the healthcare system with continuous rehabilitation of patients with adverse pain sensations, which might reduce not only their quality of life but also their productivity at work setting back the pace of our economy. It may not look like a huge deal but factor in pain as an issue for majority of us, it becomes an economical burden. Although pain has been researched into and understood by numerous researches, from its definition, mechanism of action to its inhibition in hopes of finding an absolute solution for victims of pain, the pathways of pain sensation, neurotransmitters involved in producing such a sensation are not comprehensively reviewed. Therefore, this review article aims to put in place a thorough understanding of major pain conditions that we experience-nociceptive, inflammatory and physiologically dysfunction, such as neuropathic pain and its modulation and feedback systems. Moreover, the complete mechanism of conduction is compiled within this article, elucidating understandings from various researches and breakthroughs.
Collapse
|
14
|
Tan CS, Yam MF. Mechanism of vasorelaxation induced by 3'-hydroxy-5,6,7,4'-tetramethoxyflavone in the rats aortic ring assay. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:561-569. [PMID: 29552696 DOI: 10.1007/s00210-018-1481-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/13/2018] [Indexed: 12/27/2022]
Abstract
Previous studies have demonstrated that 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF) content in Orthosiphon stamineus fractions correlate with its vasorelaxation activity. Even with the availability of previous studies, there is still very little information on the vasorelaxation effect of TMF, and few scientific studies have been carried out. Therefore, the present study was designed to investigate the vasorelaxation activity and mechanism of action of the TMF. The vasorelaxation activity and the underlying mechanisms of TMF were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. TMF caused the relaxation of aortic rings with endothelium pre-contracted with phenylephrine. However, the vasorelaxant effect of TMF was significantly decreased in PE-primed endothelium-denuded and potassium chloride-primed endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, indomethacin, tetraethylammonium, 4-aminopyridine, barium chloride, atropine and propranolol, the relaxation stimulated by TMF was significantly reduced. TMF was also found to reduce Ca2+ release from sarcoplasmic reticulum (via IP3R) and block calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of TMF involves NO/sGC/cGMP and prostacyclin pathways, calcium and potassium channels and muscarinic and beta-adrenergic receptors.
Collapse
Affiliation(s)
- Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
15
|
Overview of the Microenvironment of Vasculature in Vascular Tone Regulation. Int J Mol Sci 2018; 19:ijms19010120. [PMID: 29301280 PMCID: PMC5796069 DOI: 10.3390/ijms19010120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 12/16/2022] Open
Abstract
Hypertension is asymptomatic and a well-known “silent killer”, which can cause various concomitant diseases in human population after years of adherence. Although there are varieties of synthetic antihypertensive drugs available in current market, their relatively low efficacies and major application in only single drug therapy, as well as the undesired chronic adverse effects associated, has drawn the attention of worldwide scientists. According to the trend of antihypertensive drug evolution, the antihypertensive drugs used as primary treatment often change from time-to-time with the purpose of achieving the targeted blood pressure range. One of the major concerns that need to be accounted for here is that the signaling mechanism pathways involved in the vasculature during the vascular tone regulation should be clearly understood during the pharmacological research of antihypertensive drugs, either in vitro or in vivo. There are plenty of articles that discussed the signaling mechanism pathways mediated in vascular tone in isolated fragments instead of a whole comprehensive image. Therefore, the present review aims to summarize previous published vasculature-related studies and provide an overall depiction of each pathway including endothelium-derived relaxing factors, G-protein-coupled, enzyme-linked, and channel-linked receptors that occurred in the microenvironment of vasculature with a full schematic diagram on the ways their signals interact. Furthermore, the crucial vasodilative receptors that should be included in the mechanisms of actions study on vasodilatory effects of test compounds were suggested in the present review as well.
Collapse
|
16
|
Tan CS, Loh YC, Ng CH, Ch'ng YS, Asmawi MZ, Ahmad M, Yam MF. Anti-hypertensive and vasodilatory effects of amended Banxia Baizhu Tianma Tang. Biomed Pharmacother 2017; 97:985-994. [PMID: 29136777 DOI: 10.1016/j.biopha.2017.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Although Banxia Baizhu Tianma Tang (BBT) has been long administered for hypertensive treatment in Traditional Chinese Medicine (TCM), the ratio of the herbal components that makes up the formulation has not been optimized with respect to the anti-hypertensive effect that it inherently possesses. A newly amended BBT (ABBT) formulation was developed using the evidence-based approach of orthogonal stimulus-response compatibility model. The ABBT showed enhanced therapeutic effect while maintaining its traditional theoretical approach rooted in TCM. This study was designed to investigate the possible mechanism of actions involved in the vasodilatory activity of ABBT-50 by evaluating its vasodilative effect on isolated Sprague Dawley rats in the presence of absence of various antagonists. When pre-contracted with phenylephrine, relaxation was observed in endothelium intact (EC50=0.027±0.003mg/ml, Rmax=109.8±2.12%) and denuded aortic rings (EC50=0.409±0.073mg/ml, Rmax=63.15±1.78%), as well as in endothelium intact aortic rings pre-contracted with potassium chloride (EC50=32.7±12.16mg/ml, Rmax=34.02±3.82%). Significant decrease in the vasodilative effect of ABBT-50 was observed in the presence of Nω-nitro-l-arginine methyl ester (EC50=0.12±0.021mg/ml, Rmax=75.33±3.28%), 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (EC50=0.463±0.18mg/ml, Rmax=54.48±2.02%), methylene blue (EC50=0.19±0.037mg/ml, Rmax=83.69±3.19%), indomethacin (EC50=0.313±0.046mg/ml, Rmax=71.33±4.12%), atropine (EC50=0.146±0.013mg/ml, Rmax=77.2±3.41%), and 4-aminopyridine (EC50=0.045±0.008mg/ml, Rmax=95.55±2.36%). ABBT-50 was also suppressing Ca2+ release from sarcoplasmic reticulum and inhibiting calcium channels. Vasodilatory effects of ABBT-50 are mediated through NO/sGC/cGMP cascade and PGI2, followed by muscarinic pathways and calcium channels.
Collapse
Affiliation(s)
- Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Yean Chun Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Chiew Hoong Ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Yung Sing Ch'ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia; College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China.
| |
Collapse
|
17
|
Loh YC, Tan CS, Ch'ng YS, Ahmad M, Ng CH, Yam MF. Overview of Signaling Mechanism Pathways Employed by BPAid in Vasodilatory Activity. J Med Food 2017; 20:1201-1213. [PMID: 28953423 DOI: 10.1089/jmf.2017.3958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypertension, one of the famous "silent killers" that can attack people at any age, is a current hot topic among scientists due to multiple syndromic behavior and concomitant diseases. The new scientific-based Traditional Chinese Medicine (TCM) formulation approach was used in a previous study by combining five TCM herbs, including Gastrodia elata Bl., Uncaria rhynchophylla (Miq.) Miq. ex Havil., Pueraria thomsonii Benth., Panax notoginseng (Burk.) F.H. Chen, and Alisma orientalis (Sam.) Juzep in optimized ratio (named BPAid). The objective of the present study was to evaluate the mechanism pathways employed by BPAid for vasodilatory effect with the use of an in vitro isolated aortic rings assay. Interestingly, all the mechanisms investigated were involved in the BPAid's vasodilation activity in which the majority contributed through the nitric oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate (NO/sGC/cGMP) pathways, followed by prostacyclin (PGI2), β2-adrenergic, and M3-receptors pathways. Furthermore, the BPAid appeared to manage vascular tone by regulating action potential through potassium and both voltage-operated calcium channel and inositol triphosphate receptor (IP3R) pathways. The results obtained has confirmed the expected outcome that the benefits of TCM herbs in BPAid can meet the criteria of counteracting multiple signaling mechanism pathways involved in the etiology of hypertension. In addition to this study, the fingerprints and chemical properties of BPAid was identified by using tri-step Fourier transform infrared spectroscopy and compared with its derivatives. The results obtained suggested that the majority of the vasodilatory effects exerted by BPAid were attributed to the presence of saponins and aromatic ring-containing vasoactive compounds.
Collapse
Affiliation(s)
- Yean Chun Loh
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Chu Shan Tan
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Yung Sing Ch'ng
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Mariam Ahmad
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Chiew Hoong Ng
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Mun Fei Yam
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
- 2 College of Pharmacy, Fujian University of Traditional Chinese Medicine , Fuzhou, Fujian, China
| |
Collapse
|
18
|
Loh YC, Ch'ng YS, Tan CS, Ahmad M, Asmawi MZ, Yam MF. Mechanisms of Action of Uncaria rhynchophylla Ethanolic Extract for Its Vasodilatory Effects. J Med Food 2017; 20:895-911. [DOI: 10.1089/jmf.2016.3804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yean Chun Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Yung Sing Ch'ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mariam Ahmad
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohd Zaini Asmawi
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
19
|
Tan CS, Ch'ng YS, Loh YC, Zaini Asmawi M, Ahmad M, Yam MF. Vasorelaxation effect of Glycyrrhizae uralensis through the endothelium-dependent Pathway. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:149-160. [PMID: 28161542 DOI: 10.1016/j.jep.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza uralensis (G. uralensis) is one of the herbs used in traditional Chinese medicine (TCM) and serves as an envoy medicinal. Since G. uralensis plays a major role in the anti-hypertensive TCM formulae, we believe that G. uralensis might possess vasorelaxation activity. AIM OF THE STUDY This study is designed to investigate the vasorelaxation effect of G. uralensis from various extracts and to study its pharmacology effect. MATERIALS AND METHODS The vasorelaxation effect of G. uralensis extracts were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. RESULTS Among these three extracts of G. uralensis, 50% ethanolic extract (EFG) showed the strongest vasorelaxation activity. EFG caused the relaxation of the aortic rings pre-contracted with phenylephrine either in the presence or absence of endothelium and pre-contracted with potassium chloride in endothelium-intact aortic ring. Nω-nitro-L-arginine methyl ester, methylene blue, or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one inhibit the vasorelaxation effect of EFG in the presence of endothelium. On the other hand, in the presence of the potassium channel blockers (tetraethylammonium and barium chloride), the vasorelaxation effect of EFG was not affected, but glibenclamide and 4-aminopyridine did inhibit the vasorelaxation effect of EFG. With indomethacin, atropine and propranolol, the vasorelaxation effect by EFG was significantly reduced. EFG was also found to be effective in reducing Ca2+ release from sarcoplasmic reticulum and the blocking of calcium channels. CONCLUSIONS The results obtained suggest that EFG is involved in the NO/sGC/cGMP pathway.
Collapse
Affiliation(s)
- Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Yung Sing Ch'ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Yean Chun Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
20
|
Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF. Vasodilatory Effects of Combined Traditional Chinese Medicinal Herbs in Optimized Ratio. J Med Food 2017; 20:265-278. [DOI: 10.1089/jmf.2016.3836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Yean Chun Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Yung Sing Ch'ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Mariam Ahmad
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Mohd. Zaini Asmawi
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|