1
|
Deiab NS, Kodous AS, Mahfouz MK, Said AM, Ghobashy MM, Abozaid OAR. Smart Hesperidin/Chitosan Nanogel Mitigates Apoptosis and Endoplasmic Reticulum Stress in Fluoride and Aluminum-Induced Testicular Injury. Biol Trace Elem Res 2024; 202:4106-4124. [PMID: 38087036 PMCID: PMC11252208 DOI: 10.1007/s12011-023-03991-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 07/18/2024]
Abstract
Fluoride and aluminum are ubiquitous toxic metals with adverse reproductive effects. The citrus flavonoid hesperidin has protective activities but poor solubility and bioavailability. Nanoparticulate delivery systems can improve flavonoid effectiveness. We conducted this study to prepare a pH-responsive chitosan-based nanogel for hesperidin delivery and evaluate its effectiveness against sodium fluoride (NaF) and aluminum chloride (AlCl3) induced testicular toxicity in mice. The nanogel was synthesized using 2 kGy gamma irradiation, enabling a size under 200 nm and enhanced hesperidin release at pH 6 matching testicular acidity. Male mice received 200 mg/kg AlCl3 and 10 mg/kg NaF daily for 30 days. Hesperidin nanogel at 20 mg/kg was administered orally either prophylactically (pretreatment) or after intoxication (posttreatment). The results showed that AlCl3 + NaF induced severe oxidative stress, hormonal disturbance, apoptosis, and endoplasmic reticulum stress, evidenced by significant changes in the studied parameters and testicular histological damage. Hesperidin nanogel administration significantly inhibited oxidative stress markers, restored luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels, and alleviated tissue damage compared to the intoxicated group. It also downregulated the expression level of pro-apoptotic genes Bax, caspase-3, caspase-9, and P38MAPK, while upregulating the expression level of the anti-apoptotic BCL2 gene. Endoplasmic reticulum stress sensors PERK, ATF6, and IRE-α were also downregulated by the nanogel. The chitosan-based nanogel enhanced the delivery and efficacy of poorly bioavailable hesperidin, exhibiting remarkable protective effects against AlCl3 and NaF reproductive toxicity. This innovative nanosystem represents a promising approach to harnessing bioactive phytochemicals with delivery challenges, enabling protective effects against chemical-induced testicular damage.
Collapse
Affiliation(s)
- Nora S Deiab
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt.
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
- Department of Molecular Oncology, Cancer Institute (WIA), P.O. Box 600036, 38, Sardar Patel Road, Chennai, Tamilnadu, India
| | - Mohamed K Mahfouz
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt
| | - Alshaimaa M Said
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Omayma A R Abozaid
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt
| |
Collapse
|
2
|
Ma C, Liu C, Ren M, Cui L, Xi X, Kang W. Inhibitory effect of quercetin-3-O-α-rhamnoside, p-coumaric acid, phloridzin and 4-O-β-glucopyranosyl-cis-coumaric acid on rats liver microsomes cytochrome P450 enzyme activities. Food Chem Toxicol 2023; 172:113583. [PMID: 36577462 DOI: 10.1016/j.fct.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
P-coumaric acid, phloridzin, quercetin-3-O-α-rhamnoside and 4-O-β-glucopyranosyl-cis-coumaric acid isolated in Malus micromalus Makino fruit were investigated the inhibitory activity of cytochrome CYP450 enzyme by the probe test method of rat liver microsomes in vitro, and determined the role in drug metabolism and/or toxicology. Enzymatic kinetics method was used to determine the inhibition type of these components and corresponding inhibition constants. The results demonstrated that all the 4 compounds had no significance to inhibit the activities of CYP2E1 and CYP2C11. P-coumaric acid, phloridzin and quercetin-3-O-α-rhamnoside had a weak inhibitory effect on CYP3A4, which belonged to the competitive inhibitory type with inhibitory constants of 10.56, 30.79 and 40.29 μmol L-1, respectively. 4-O-β-glucopyranosyl-cis-coumaric acid had a moderate inhibitory effect on CYP3A4, which belonged to the anti-competitive inhibition type and the inhibition constant was 5.56 μmol L-1. The CYP1A2 could be weakly inhibited by p-coumaric acid in the competitive type, and the inhibition constant is 25.20 μmol L-1 4-O-β-glucopyranosyl-cis-coumaric acid exhibited anti-competitive inhibition of CYP1A2 with an inhibition constant of 19.91 μmol L-1, and the inhibition effect was weak. The results will be useful to optimize the clinical dosage regimen and avoid drug-drug interactions when it is utilized comminating with other medicines in the clinic.
Collapse
Affiliation(s)
- Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China
| | - Cunyu Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Mengjie Ren
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China
| | - Xuefeng Xi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; College of Physical Education, Henan University, Henan, Kaifeng, 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Hussain A, Naughton DP, Barker J. Development and Validation of a Novel HPLC Method to Analyse Metabolic Reaction Products Catalysed by the CYP3A2 Isoform: In Vitro Inhibition of CYP3A2 Enzyme Activity by Aspirin (Drugs Often Used Together in COVID-19 Treatment). Molecules 2022; 27:molecules27030927. [PMID: 35164195 PMCID: PMC8838585 DOI: 10.3390/molecules27030927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Aspirin (also known as acetylsalicylic acid) is a drug intended to treat fever, pain, or inflammation. Treatment of moderate to severe cases of COVID-19 using aspirin along with dexamethasone has gained major attention globally in recent times. Thus, the purpose of this study was to use High-Performance Liquid Chromatography (HPLC) to evaluate the in vitro inhibition of CYP3A2 enzyme activity using aspirin in rat liver microsomes (RLMs). In this study, an efficient and sensitive HPLC method was developed using a reversed phase C18 column (X Bridge 4.6 mm × 150 mm, 3.5 µm) at 243 nm using acetonitrile and water (70:30 v/v). The linearity (r2 > 0.999), precision (<15%), accuracy and recovery (80–120%), limit of detection (5.60 µM and 0.06 µM), limit of quantification (16.98 µM and 0.19 µM), and stability of the newly developed method were validated for dexamethasone and 6β-hydroxydexamethasone, respectively, following International Conference on Harmonization (ICH) guidelines. This method was applied in vitro to measure CYP3A2 activity. The results showed that aspirin competitively inhibits 6β-hydroxylation (CYP3A2 activity) with an inhibition constant (Ki) = 95.46 µM and the concentration of the inhibitor causing 50% inhibition of original enzyme activity (IC50) = 190.92 µM. This indicated that there is a minimal risk of toxicity when dexamethasone and aspirin are co-administrated and a very low risk of toxicity and drug interaction with drugs that are a substrate for CYP3A2 in healthcare settings.
Collapse
|
4
|
New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother 2021; 137:111326. [PMID: 33556870 DOI: 10.1016/j.biopha.2021.111326] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Over the years, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased year by year; however, due to its complicated pathogenesis, there is no effective treatment so far. It is reported that Cytochrome P450 2E1 (CYP2E1) plays an indispensable role in the development of NAFLD, and numerous studies have shown that flavonoids have a hepatoprotective effect and can exert a beneficial effect on NAFLD by regulating the activity of CYP2E1. Therefore, flavonoids may become effective drugs for the treatment of NAFLD in the future. This prompted us to review the research progress of the pathological mechanism of NAFLD and the impact of CYP2E1 activity changes during the pathological process, and to summarize the protective effect of flavonoids against CYP2E1 activity.
Collapse
|
5
|
Involvement of NF-κB in the reversal of CYP3A down-regulation induced by sea buckthorn in BCG-induced rats. PLoS One 2020; 15:e0238810. [PMID: 32915856 PMCID: PMC7485842 DOI: 10.1371/journal.pone.0238810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023] Open
Abstract
Previous studies reported that sea buckthorn (Hippophae rhamnoides L., Elaeagnaceae, HRP) exhibits hepatoprotective effects via its anti-inflammatory and antioxidant properties as well as its inhibitory effects on collagen synthesis. However, it is unclear whether this hepatoprotective effect is also achieved by regulating liver drug metabolism enzyme pathways. Herein, we examined the regulatory effect of HRP on cytochrome P450 3A (CYP3A) in rats with immune liver injury, and explored the molecular mechanism of its hepatoprotective effect. Rat models of immunological liver injury were induced by intravenous injections of Bacillus Calmette-Guerin (BCG; 125 mg kg-1; 2 wks). Specific protein levels were detected by ELISA or western blot, and CYP3A mRNA expression was detected by RT-PCR. High-performance liquid chromatography (HPLC) detected relative changes in CYP3A metabolic activity based on the rates of 1-hydroxylation of the probe drug midazolam (MDZ). BCG pretreatment (125 mg kg-1) significantly down-regulated liver CYP3A protein expression compared with the control, metabolic activity, and transcription levels while up-regulating liver NF-κB, IL-1β, TNF-α and iNOS. HRP intervention (ED50: 78 mg kg-1) moderately reversed NF-κB, inflammatory cytokines, and iNOS activation in a dose-dependent manner (P < 0.05), and suppressed CYP3A down-regulation (P < 0.05); thereby partially alleviating liver injury. During immune liver injury, HRP may reverse CYP3A down-regulation by inhibiting NF-κB signal transduction, and protect liver function, which involves regulation of enzymes transcriptionally, translationally and post-translationally. The discovery that NF-κB is a molecular target of HRP may initiate the development and optimization of a clinical therapeutic approach to mitigate hepatitis B and other immunity-related liver diseases.
Collapse
|
6
|
Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5352034. [PMID: 32419811 PMCID: PMC7201513 DOI: 10.1155/2020/5352034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022]
Abstract
Purpose Excessive glutamate amount can give oxidative stress to neuronal cells, and the accumulation of cell death can trigger the neurodegenerative disorders. In this study, we discovered the neuroprotective effect of Lysimachia christinae Hance in the mouse hippocampal HT22 cell line. Method Overnight incubated HT22 cells were pretreated with L. christinae extract dose dependently (1, 10, and 100 μg/ml). Followed by then, glutamate was treated. These treated cells were incubated several times again, and cell viability, accumulation of reactive oxygen species (ROS) and Ca2+, mitochondrial membrane potential (MMP), and glutathione-related enzyme amount were measured. Results As a result, L. christinae increases the cell viability by inhibiting the ROS and Ca2+ formation, recovering the level of MMP and enhancing the activity of glutathione production compared with only vehicle-treated groups. Conclusion These draw that L. christinae may remarkably decelerate the neurodegeneration by minimizing neuronal cell damage via oxidative stress.
Collapse
|
7
|
Ye XW, Deng YL, Xia LT, Ren HM, Zhang JL. Uncovering the mechanism of the effects of Paeoniae Radix Alba on iron-deficiency anaemia through a network pharmacology-based strategy. BMC Complement Med Ther 2020; 20:130. [PMID: 32345291 PMCID: PMC7189569 DOI: 10.1186/s12906-020-02925-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Paeoniae Radix Alba, the root of the plant Paeonia lactiflora Pall, is a common blood-enriching drug in traditional Chinese medicine. Its effectiveness in the clinical treatment of anaemia is remarkable, but its potential pharmacologic mechanism has not been clarified. METHODS In this study, the potential pharmacologic mechanism of Paeoniae Radix Alba in the treatment of iron-deficiency anaemia was preliminarily elucidated through systematic and comprehensive network pharmacology. RESULTS Specifically, we obtained 15 candidate active ingredients from among 146 chemical components in Paeoniae Radix Alba. The ingredients were predicted to target 77 genes associated with iron-deficiency anaemia. In-depth analyses of these targets revealed that they were mostly associated with energy metabolism, cell proliferation, and stress responses, suggesting that Paeoniae Radix Alba helps alleviate iron-deficiency anaemia by affecting these processes. In addition, we conducted a core target analysis and a cluster analysis of protein-protein interaction (PPI) networks. The results showed that four pathways, the p53 signalling pathway, the IL-17 signalling pathway, the TNF signalling pathway and the AGE-RAGE signalling pathway in diabetic complications, may be major pathways associated with the ameliorative effects of Paeoniae Radix Alba on iron-deficiency anaemia. Moreover, molecular docking verified the credibility of the network for molecular target prediction. CONCLUSIONS Overall, this study predicted the functional ingredients in Paeoniae Radix Alba and their targets and uncovered the mechanism of action of this drug, providing new insights for advanced research on Paeoniae Radix Alba and other traditional Chinese medicines.
Collapse
Affiliation(s)
- Xian-Wen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ya-Ling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Lan-Ting Xia
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Hong-Min Ren
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jin-Lian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
8
|
Abdou EM, Fayed MAA, Helal D, Ahmed KA. Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl 4 induced hepatotoxicity in rats. Sci Rep 2019; 9:19779. [PMID: 31875004 PMCID: PMC6930297 DOI: 10.1038/s41598-019-56320-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
The hepatoprotective effect of β-Sitosterol (BSS), a natural phytosterol, after being formulated into a suitable pharmaceutical drug delivery system has not been widely explored. BSS was isolated from Centaurea pumilio L., identified and formulated as lipid-polymer hybrid nanoparticles (LPHNPs) using the poly(D,L-lactide-co-glycolide) polymer and DSPE-PEG-2000 lipid in different ratios. The selected formulation, prepared with a lipid: polymer: drug ratio of 2:2:2, had an entrapment efficiency (EE%) of 94.42 ± 3.8, particle size of 181.5 ± 11.3 nm, poly dispersity index (PDI) of 0.223 ± 0.06, zeta potential of −37.34 ± 3.21 and the highest drug release after 24 h. The hepatoprotective effect of the formulation at two different doses against CCl4 induced hepatotoxicity was evaluated in rats. The results showed that the BSS-LPHNPs (400 mg/kg) have the ability to restore the liver enzymes (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), liver lipid peroxidation markers (malondialdehyde (MDA) and catalase (CAT)), total bilirubin and albumin to their normal levels without inhibitory effect on the CYP2E1 activity. Also, the formulation could maintain the normal histological structure of liver tissue and decrease the cleaved caspase-3 expression. LPHNPs formulation encapsulating natural BSS is a promising hepatoprotective drug delivery system.
Collapse
Affiliation(s)
- Ebtsam M Abdou
- Department of Pharmaceutics, National organization of Drug control and Research (NODCAR), Giza, Egypt. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, MTI University, Cairo, Egypt.
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Doaa Helal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, El-Fayoum University, El-Fayoum, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
9
|
Shi M, Cui Y, Liu C, Li C, Liu Z, Kang WY. CYPs-mediated drug-drug interactions on psoralidin, isobavachalcone, neobavaisoflavone and daidzein in rats liver microsomes. Food Chem Toxicol 2019; 136:111027. [PMID: 31870919 DOI: 10.1016/j.fct.2019.111027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
The incubation system of CYP2E1 and CYP3A4 enzymes in rat liver microsomes was established to investigate the effects of psoralidin, isobavachalcone, neobavaisoflavone and daidzein from Fructus Psoraleae in vitro. The relevant metabolites were measured by the method of high performance liquid chromatography (HPLC), after probe substrates of 4-nitrophenol, testosterone and the drugs at different concentrations were added to the incubation systems. In addition, real-time RT-PCR was performed to determine the effect of psoralidin, neobavaisoflavone and daidzein on the mRNA expression of CYP3A4 in rat liver. The results suggested that psoralidin, isobavachalcone and neobavaisoflavone were Medium-intensity inhibitors of CYP2E1 with Ki values of 2.58, 1.28 and 19.07 μM, respectively, which could inhibit the increase of CYP2E1 and reduce diseases caused by lipid peroxidation. Isobavachalcone (Ki = 37.52 μM) showed a weak competitive inhibition on CYP3A4. Psoralidin and neobavaisoflavone showed obvious induction effects on CYP3A4 in the expression level of mRNA, which could accelerate the effects of drug metabolism and lead to the risk of inducing DDIs and serious adverse reactions. The results could be used for guideline of Fructus Psoraleae in clinic, which aimed to calculate the drug toxicity by studying the drug-drug interactions caused by the induction and inhibition of CYP450.
Collapse
Affiliation(s)
- Mengjun Shi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Yiping Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Cunyu Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Joint International Research Laboratory of Food & Medicine, Henan Province, Henan University, Kaifeng, 475004, China
| | - Changqin Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng, 475004, Henan, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China.
| | - Wen-Yi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Joint International Research Laboratory of Food & Medicine, Henan Province, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Bahaji Azami NL, Sun M. Zeaxanthin Dipalmitate in the Treatment of Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1475163. [PMID: 31531108 PMCID: PMC6721266 DOI: 10.1155/2019/1475163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Goji berry, Lycium barbarum, has been widely used in traditional Chinese medicine (TCM), but its properties have not been studied until recently. The fruit is a major source of zeaxanthin dipalmitate (ZD), a xanthophyll carotenoid shown to benefit the liver. Liver disease is one of the most prevalent diseases in the world. Some conditions, such as chronic hepatitis B virus, liver cirrhosis, and hepatocellular carcinoma, remain incurable. Managing them can constitute an economic burden for patients and healthcare systems. Hence, development of more effective pharmacological drugs is warranted. Studies have shown the hepatoprotective, antifibrotic, antioxidant, anti-inflammatory, antiapoptotic, antitumor, and chemopreventive properties of ZD. These findings suggest that ZD-based drugs could hold promise for many liver disorders. In this paper, we reviewed the current literature regarding the therapeutic effects of ZD in the treatment of liver disease.
Collapse
Affiliation(s)
- Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Yu J, Chen H, Jiang L, Wang J, Dai J, Wang J. Codelivery of Adriamycin and P-gp Inhibitor Quercetin Using PEGylated Liposomes to Overcome Cancer Drug Resistance. J Pharm Sci 2019; 108:1788-1799. [DOI: 10.1016/j.xphs.2018.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
|
12
|
Flavonoids in Different Parts of Lysimachia clethroides Duby Extracted by Ionic Liquid: Analysis by HPLC and Antioxidant Activity Assay. J CHEM-NY 2017. [DOI: 10.1155/2017/2080738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To establish methods for simultaneous determination of isoquercitrin, astragalin in leaves, quercetin, and kaempferol in flowers of Lysimachia clethroides Duby, respectively, the methods were ultrasound-assisted extraction combined with RP-HPLC, and ionic liquid was used as the extraction solvent. Meanwhile, the antioxidant activity of the different extracts of L. clethroides was evaluated. Purospher STAR RP-C18 column (4.6 mm × 250 mm, 5 μm) was used for analysis. The flow rate was 0.6 mL·min−1, and the column temperature was 25°C. The detection wavelength was 360 nm. The mobile phases a and b consisted of acetonitrile-0.4% phosphoric acid (18 : 82, v/v), methanol (A), and 0.4% phosphoric acid (B), respectively. Linear ranges were 0.068~1.64, 0.060~1.44, 0.0080~0.19, and 0.0077~0.18 μg for isoquercitrin, astragalin, quercetin, and kaempferol, respectively. The average recoveries of the four constituents were 99.17%, 98.39%, 100.68%, and 98.81%, respectively. The antioxidant activity of the extracts was detected by DPPH, ABTS, and FRAP. Under the optimized conditions, all the test solutions showed a certain antioxidant activity and the ionic liquid extracts were better than that of extract of methanol. Ionic liquid used as the extraction solvent had the potential to extract active ingredients efficiently from L. clethroides, and this method improved the antioxidant activity with accurate and reliable results.
Collapse
|