1
|
Kaldybayeva AB, Yu VK, Durap F, Aydemir M, Tassibekov KS. Metal Complexes of Bispidine Derivatives: Achievements and Prospects for the Future. Molecules 2025; 30:1138. [PMID: 40076361 PMCID: PMC11902022 DOI: 10.3390/molecules30051138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Multidentate bispidine ligands, including tetra-, penta-, hexa-, hepta-, and octadentate variants, exhibit strong coordination tendencies due to their intrinsic rigidity, significant reorganization potential, and ability to efficiently encapsulate metal ions. These structural attributes profoundly influence the thermodynamic stability, metal ion selectivity, redox behavior, and spin-state configuration of the resulting complexes. Metal ions, in turn, serve as highly suitable candidates for coordination due to their remarkable kinetic inertness, rapid complex formation kinetics, and low redox potential. This review focuses on ligands incorporating the bispidine core (3,7-diazabicyclo[3.3.1]nonane) and provides an overview of advancements in the synthesis of metal complexes involving p-, d-, and f-block elements. Furthermore, the rationale behind the growing interest in bispidine-based complexes for applications in radiopharmaceuticals, medicinal chemistry, and organic synthesis is explored, particularly in the context of their potential for diagnostic and catalytic drug development.
Collapse
Affiliation(s)
- Altynay B. Kaldybayeva
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan;
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Valentina K. Yu
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Feyyaz Durap
- Department of Chemistry, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye; (F.D.); (M.A.)
- Science and Technolgy, Application and Research Center (DUBTAM), Dicle University, 21280 Diyarbakir, Türkiye
| | - Murat Aydemir
- Department of Chemistry, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye; (F.D.); (M.A.)
- Science and Technolgy, Application and Research Center (DUBTAM), Dicle University, 21280 Diyarbakir, Türkiye
| | - Khaidar S. Tassibekov
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan;
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| |
Collapse
|
2
|
Rubab L, Anum A, Al-Hussain SA, Irfan A, Ahmad S, Ullah S, Al-Mutairi AA, Zaki MEA. Green Chemistry in Organic Synthesis: Recent Update on Green Catalytic Approaches in Synthesis of 1,2,4-Thiadiazoles. Catalysts 2022; 12:1329. [DOI: 10.3390/catal12111329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Green (sustainable) chemistry provides a framework for chemists, pharmacists, medicinal chemists and chemical engineers to design processes, protocols and synthetic methodologies to make their contribution to the broad spectrum of global sustainability. Green synthetic conditions, especially catalysis, are the pillar of green chemistry. Green chemistry principles help synthetic chemists overcome the problems of conventional synthesis, such as slow reaction rates, unhealthy solvents and catalysts and the long duration of reaction completion time, and envision solutions by developing environmentally benign catalysts, green solvents, use of microwave and ultrasonic radiations, solvent-free, grinding and chemo-mechanical approaches. 1,2,4-thiadiazole is a privileged structural motif that belongs to the class of nitrogen–sulfur-containing heterocycles with diverse medicinal and pharmaceutical applications. This comprehensive review systemizes types of green solvents, green catalysts, ideal green organic synthesis characteristics and the green synthetic approaches, such as microwave irradiation, ultrasound, ionic liquids, solvent-free, metal-free conditions, green solvents and heterogeneous catalysis to construct different 1,2,4-thiadiazoles scaffolds.
Collapse
Affiliation(s)
- Laila Rubab
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Ayesha Anum
- Hamdard Institute of Pharmaceutical Sciences, Islamabad Campus, Hamdard University of Pharmaceutical Sciences, Islamabad 44000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Sami Ullah
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Aamal A. Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
3
|
Casti F, Basoccu F, Mocci R, De Luca L, Porcheddu A, Cuccu F. Appealing Renewable Materials in Green Chemistry. Molecules 2022; 27:1988. [PMID: 35335350 PMCID: PMC8955003 DOI: 10.3390/molecules27061988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
In just a few years, chemists have significantly changed their approach to the synthesis of organic molecules in the laboratory and industry. Researchers are encouraged to approach "greener" reagents, solvents, and methodologies, to go hand in hand with the world's environmental matter, such as water, soil, and air pollution. The employment of plant and animal derivates that are commonly regarded as "waste material" has paved the way for the development of new green strategies. In this review, the most important innovations in this field have been highlighted, paying due attention to those materials that have played a crucial role in organic reactions: wool, silk, and feather. Moreover, we decided to focus on the other most important supports and catalysts in green syntheses, such as proteins and their derivates. Different materials have shown prominent activity in the adsorption of metals and organic dyes, which has constituted a relevant scope in the last two decades. We intend to furnish a complete screening of the application given to these materials and contribute to their potential future utilization.
Collapse
Affiliation(s)
- Federico Casti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Francesco Basoccu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Federico Cuccu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| |
Collapse
|
4
|
Häring M, Tautz M, Alegre-Requena JV, Saldías C, Díaz Díaz D. Non-enzyme entrapping biohydrogels in catalysis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Jagadale M, Naikwade A, Salunkhe R, Rajmane M, Rashinkar G. An ionic liquid gel: a heterogeneous catalyst for Erlenmeyer–Plochl and Henry reactions. NEW J CHEM 2018. [DOI: 10.1039/c8nj00367j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Agar gel entrapped [Bmim]OH has been prepared and employed as an efficient heterogeneous catalyst for the synthesis of β-nitro alcohols and azlactones.
Collapse
|
6
|
Kumari S, Häring M, Gupta SS, Díaz Díaz D. Catalytic Macroporous Biohydrogels Made of Ferritin-Encapsulated Gold Nanoparticles. Chempluschem 2017; 82:225-232. [PMID: 31961537 DOI: 10.1002/cplu.201600454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/28/2016] [Indexed: 11/11/2022]
Abstract
Reported is a modular approach for the incorporation and stabilization of gold nanoparticles inside a three-dimensional macroporous hydrogel made of ferritin. The strategy, which involves the dynamic templating of surfactant H1 domains, demineralization, and remineralization helps to overcome aggregation and degradation issues usually associated with bare-metal-based nanocatalysts. The catalytic activity of the so-synthesized bionanocomposite hydrogel was demonstrated in both nitroaldol (Henry) and nitroreduction model reactions in aqueous solution at room temperature. An interesting synergistic effect between basic residues of the protein and the gold nanoparticles was found in the nitroaldol reaction when carried out in water in the presence of a phase-transfer catalyst. Furthermore, the reduction of 4-nitrophenol and 4-nitroaniline catalyzed by the nanocomposite scaffold in the presence of NaBH4 proceeded significantly faster than that using other known Au- and Ag-based catalysts under similar conditions.
Collapse
Affiliation(s)
- Sushma Kumari
- CReST Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Marleen Häring
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg, 93053, Germany
| | - Sayam Sen Gupta
- CReST Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India.,Current affiliation: Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur, West Bengal, 741 246, India
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg, 93053, Germany.,IQAC-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain
| |
Collapse
|