1
|
Green hemi-synthesis of novel thiazole derivatives from Ammodaucus leucotrichus Coss. & Dur. and Cuminum cyminum L. essential oils: stereochemistry, molecular fluorescence spectroscopy, in vitro biologicial activity, and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Mgidlana S, Managa M, Nyokong T. Asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanoparticles for photoinactivation of Staphylococcus aureus. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2090837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sithi Mgidlana
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
3
|
A facile one-pot synthesis of 1H-pyrano[2,3-d]pyrimidin-4(5H)-ones and evaluation of their Ct-DNA interaction, antibacterial and anti-inflammatory activity. J CHEM SCI 2021. [DOI: 10.1007/s12039-020-01875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Pospisilova S, Malik I, Curillova J, Michnova H, Cerna L, Padrtova T, Hosek J, Pecher D, Cizek A, Jampilek J. Insight into antimicrobial activity of substituted phenylcarbamoyloxypiperazinylpropanols. Bioorg Chem 2020; 102:104060. [PMID: 32663668 DOI: 10.1016/j.bioorg.2020.104060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
3-[4-(Substituted)phenyl-/4-(diphenylmethyl)phenylpiperazin-1-yl]-2-hydroxypropyl-1-[(substituted)phenyl]carbamates and their salts with hydrochloric acid were synthesized, characterized, and tested in vitro against Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as reference and quality control strains, against three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. All the compounds were evaluated against Mycobacterium tuberculosis H37Ra/ATCC 25177, M. kansasii DSM 44162, and M. smegmatis ATCC 700084. All of the tested compounds demonstrated very good activity against all the tested strains/isolates comparable with or better than that of clinically used drugs (ampicillin, ciprofloxacin, vancomycin, isoniazid). 1-[{(3-Trifluoromethyl)phenyl}carbamoyloxy-2-hydroxypropyl]-4-(3,4-dichlorophenyl)piperazin-1-ium chloride demonstrated the highest potency against all the tested strains/isolates (MICs ranged from 3.78 to 30.2 µM), and 1-[{(3-trifluoromethyl)phenyl}carbamoyloxy-2-hydroxypropyl]-4-(diphenylmethyl)piperazin-1-ium chloride was the most effective against all the screened mycobacterial strains (MICs ranged from 3.64 to 14.5 µM). All the investigated derivatives had strong antibiofilm activity against S. aureus ATCC 29123 and a synergistic or additive effect with gentamicin against isolates of E. faecalis with both intrinsic and acquired resistance to gentamicin. The screening of the cytotoxicity of the compounds was performed using human monocytic leukemia THP-1 cells. The IC50 values of the most effective compounds ranged from ca. 2.8 to 7.3 µM; thus, it can be stated that the antimicrobial effect is closely connected with their cytotoxicity. These observations disqualify these compounds from further development as antimicrobial agents, but they can be considered potential multi-target drugs with a preferred anticancer effect with good water solubility and additional anti-infectious activity.
Collapse
Affiliation(s)
- Sarka Pospisilova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic.
| | - Jana Curillova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic
| | - Hana Michnova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Lucie Cerna
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| | - Jan Hosek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Daniel Pecher
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1946/1, 612 42 Brno, Czech Republic
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
5
|
Kholodniak OV, Kazunin MS, Meyer F, Kovalenko SI, Steffens KG. Novel
N
‐Cycloalkylcarbonyl‐
N
′‐arylthioureas: Synthesis, Design, Antifungal Activity and Gene Toxicity. Chem Biodivers 2020; 17:e2000212. [DOI: 10.1002/cbdv.202000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Olena V. Kholodniak
- Zaporizhzhia State Medical UniversityOrganic and Bioorganic Chemistry Department Mayakovs'ky Ave. 26 69035 Zaporizhzhia Ukraine
- Neubrandenburg University of Applied SciencesFaculty of Agriculture and Food Science Brodaer Str. 2 17033 Neubrandenburg Germany
| | - Maksym S. Kazunin
- Zaporizhzhia State Medical UniversityOrganic and Bioorganic Chemistry Department Mayakovs'ky Ave. 26 69035 Zaporizhzhia Ukraine
| | - Fatuma Meyer
- Neubrandenburg University of Applied SciencesFaculty of Agriculture and Food Science Brodaer Str. 2 17033 Neubrandenburg Germany
| | - Sergiy I. Kovalenko
- Zaporizhzhia State Medical UniversityOrganic and Bioorganic Chemistry Department Mayakovs'ky Ave. 26 69035 Zaporizhzhia Ukraine
| | - Karl G. Steffens
- Neubrandenburg University of Applied SciencesFaculty of Agriculture and Food Science Brodaer Str. 2 17033 Neubrandenburg Germany
| |
Collapse
|
6
|
Khalil HH, Khattab SN, Toughan MM, El‐Saghier AMM, El‐Wakil MH. Identification of a Novel DNA Gyrase Inhibitor via Design and Synthesis of New Antibacterial Pyrido[1′,2′:1,2]pyrimido[4,5‐
e
][1,3,4]thiadiazin‐5‐ol Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hosam H. Khalil
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
| | - Sherine N. Khattab
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
- Cancer Nanotechnology Research Laboratory (CNRL)Faculty of PharmacyAlexandria University Alexandria 21521 Egypt
| | - Mayada M. Toughan
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
| | | | - Marwa H. El‐Wakil
- Department of Pharmaceutical ChemistryFaculty of PharmacyAlexandria University Alexandria 21521 Egypt
| |
Collapse
|
7
|
Salama A, Hasanin M, Hesemann P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym 2020; 241:116363. [PMID: 32507164 DOI: 10.1016/j.carbpol.2020.116363] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
New chitosan derivatives bearing guanidinium functions were synthesized following different synthesis strategies. N-guanidinium chitosan acetate and N-guanidinium chitosan chloride were synthesized by direct reaction between chitosan and cyanamide in the presence of scandium(III) triflate. The synthesis of N-guanidinium chitosan (N,N'-dicyclohexyl) chloride and N-guanidinium chitosan (N-(3-dimethylaminopropyl)-N'-ethyl hydrochloride) chloride involved the reaction of chitosan with carbodiimides in ionic liquid. The chitosan derivatives were characterized by analytical techniques including 13C solid state NMR, FT-IR spectroscopies, thermogravimetry and elemental analysis. The antimicrobial properties of chitosan and the new derivatives were investigated using the minimal inhibitory concentration (MIC) technique. All new guanylated chitosan derivatives displayed high antimicrobial activity in comparison with neat chitosan. The N-guanidinium chitosan acetate reduced the time required for killing to half in comparison with chitosan and recorded MIC values less than 3.125 mg/mL against all assayed microorganisms. This work opens new perspectives for using chitosan derivatives as antimicrobial surfaces.
Collapse
Affiliation(s)
- Ahmed Salama
- Institut Charles Gerhardt de Montpellier, UMR CNRS 5253 Université de Montpellier-CNRS-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France; Cellulose and Paper Department, National Research Center, 33 El-Behouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed Hasanin
- Cellulose and Paper Department, National Research Center, 33 El-Behouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Peter Hesemann
- Institut Charles Gerhardt de Montpellier, UMR CNRS 5253 Université de Montpellier-CNRS-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| |
Collapse
|
8
|
Pospisilova S, Marvanova P, Treml J, Moricz AM, Ott PG, Mokry P, Odehnalova K, Sedo O, Cizek A, Jampilek J. Activity of N-Phenylpiperazine Derivatives Against Bacterial and Fungal Pathogens. Curr Protein Pept Sci 2020; 20:1119-1129. [PMID: 31518219 DOI: 10.2174/1389203720666190913114041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND As the bacterial resistance to antibacterial chemotherapeutics is one of the greatest problems in modern medicine, efforts are made to develop new antimicrobial drugs. Compounds with a piperazine ring have proved to be promising agents against various pathogens. OBJECTIVE The aim of the study was to prepare a series of new N-phenylpiperazines and determine their activity against various pathogens. METHOD Target compounds were prepared by multi-step synthesis starting from an appropriate substituted acid to an oxirane intermediate reacting with 1-(4-nitrophenyl)piperazine. Lipophilicity and pKa values were experimentally determined. Other molecular parameters were calculated. The inhibitory activity of the target compounds against Staphylococcus aureus, four mycobacteria strains, Bipolaris sorokiniana, and Fusarium avenaceum was tested. In vitro antiproliferative activity was determined on a THP-1 cell line, and toxicity against plant was determined using Nicotiana tabacum. RESULTS In general, most compounds demonstrated only moderate effects. 1-(2-Hydroxy-3-{[4-(propan- 2-yloxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride and 1-{3-[(4-butoxybenzoyl)- oxy]-2-hydroxypropyl}-4-(4-nitrophenyl)piperazinediium dichloride showed the highest inhibition activity against M. kansasii (MIC = 15.4 and 15.0 µM, respectively) and the latter also against M. marinum (MIC = 15.0 µM). 1-(2-Hydroxy-3-{[4-(2-propoxyethoxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride had the highest activity against F. avenaceum (MIC = 14.2 µM). All the compounds showed only insignificant toxic effects on human and plant cells. CONCLUSION Ten new 1-(4-nitrophenyl)piperazine derivatives were prepared and analyzed, and their antistaphylococcal, antimycobacterial, and antifungal activities were determined. The activity against M. kansasii was positively influenced by higher lipophilicity, the electron-donor properties of substituent R and a lower dissociation constant. The exact mechanism of action will be investigated in follow-up studies.
Collapse
Affiliation(s)
- Sarka Pospisilova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Agnes M Moricz
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Klara Odehnalova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Ondrej Sedo
- Research Group of Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Hekal MH, El-Naggar AM, Abu El-Azm FSM, El-Sayed WM. Synthesis of new oxadiazol-phthalazinone derivatives with anti-proliferative activity; molecular docking, pro-apoptotic, and enzyme inhibition profile. RSC Adv 2020; 10:3675-3688. [PMID: 35492649 PMCID: PMC9048702 DOI: 10.1039/c9ra09016a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background and aim: The current study reports the synthesis and biological evaluation of two novel series of 4-(5-mercapto-1,3,4-oxadiazol-2-yl)phthalazin-1(2H)-one derivatives. Methods: The synthetic reactions were carried out under both conventional and ultrasonic irradiation conditions. The anti-proliferative activity of the newly synthesized compounds against two human epithelial cell lines; liver (HepG2) and breast (MCF-7) in addition to normal fibroblasts (WI-38) was investigated. In addition to molecular docking studies, the possible mechanism(s) of action were also explored. Results: In general, an improvement in synthetic rates and yields was observed when reactions were carried out under sonication compared with classical conditions. The structures of the products were established based on analytical and spectral data. Derivatives 2e and 7d, in addition to compound 1, had significant and selective anti-proliferative activity against liver and breast cancer cell lines without harming normal fibroblasts. These derivatives arrested the cell cycle progression and/or induced apoptosis. This has been manifested by the elevation in the expression of p53 and caspase 3, down-regulation of cdk1, and a reduction in the concentrations of MAPK and Topo II at submicromolar concentrations. The latter results confirmed the molecular docking study. Conclusions: Compound 1 had the best profile on the gene and protein levels (arresting cell cycle and inducing apoptosis). The ability of compounds 1 and 2e to inhibit both MAPK and Topo II nominates these derivatives as potential candidates for further anticancer and antitumor studies.
Collapse
Affiliation(s)
- Mohamed H Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Abeer M El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Fatma S M Abu El-Azm
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt +202/2684-2123 +202/2482-1633
| |
Collapse
|
10
|
Kułaga D, Jaśkowska J, Satała G. Design, synthesis and biological evaluation of novel serotonin and dopamine receptor ligands being 6-bromohexyl saccharine derivatives. Bioorg Med Chem Lett 2019; 29:126667. [PMID: 31547945 DOI: 10.1016/j.bmcl.2019.126667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Due to numerous side effects of current antidepressants, the search for new, safer bioactive compounds is still a valid research topic in medical chemistry. In our research we decided to synthesize and determine SAR for new hexyl arylpiperazines (LACPs) derivated with saccharin moiety. High biological activity has been explained using molecular modelling methods. The compounds obtained show high affinity for the 5-HT1A (compound 18, Ki = 4 nM - antagonist mode) and D2 (compound 15, Ki = 7 nM - antagonist mode) receptor, and in some cases also 5-HT7 receptor (compound 17, Ki = 20 nM). A preliminary ADME analysis showed that the compounds exhibit CNS drugability properties. We have proved that carbon-chain lengthening may have a beneficial effect on increasing the activity towards serotonin and dopamine receptors.
Collapse
Affiliation(s)
- Damian Kułaga
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
11
|
Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †. Molecules 2018; 23:molecules23071635. [PMID: 29973562 PMCID: PMC6099728 DOI: 10.3390/molecules23071635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022] Open
Abstract
The evaluation of the lipophilic characteristics of biologically active agents is indispensable for the rational design of ADMET-tailored structure⁻activity models. N-Alkoxy-3-hydroxynaphthalene-2-carboxanilides, N-alkoxy-1-hydroxynaphthalene-2-carboxanilides, and N-alkoxy-2-hydroxynaphthalene-1-carboxanilides were recently reported as a series of compounds with antimycobacterial, antibacterial, and herbicidal activity. As it was found that the lipophilicity of these biologically active agents determines their activity, the hydro-lipophilic properties of all three series were investigated in this study. All 57 anilides were analyzed using the reversed-phase high-performance liquid chromatography method for the measurement of lipophilicity. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary reversed-phase column. In the present study, a range of software lipophilicity predictors for the estimation of clogP values of a set of N-alkoxyphenylhydroxynaphthalenecarboxamides was employed and subsequently cross-compared with experimental parameters. Thus, the empirical values of lipophilicity (logk) and the distributive parameters (π) were compared with the corresponding in silico characteristics that were calculated using alternative methods for deducing the lipophilic features. To scrutinize (dis)similarities between the derivatives, a PCA procedure was applied to visualize the major differences in the performance of molecules with respect to their lipophilic profile, molecular weight, and violations of Lipinski’s Rule of Five.
Collapse
|