1
|
Yuan Y, Li M, Apostolopoulos V, Matsoukas J, Wolf WM, Blaskovich MAT, Bojarska J, Ziora ZM. Tetrazoles: A multi-potent motif in drug design. Eur J Med Chem 2024; 279:116870. [PMID: 39316842 DOI: 10.1016/j.ejmech.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The unique physicochemical properties and fascinating bioisosterism of tetrazole scaffolds have received significant attention in medicinal chemistry. We report recent efforts using tetrazoles in drug design strategies in this context. Despite the increasing prevalence of tetrazoles in FDA-approved drugs for various conditions such as cancer, bacterial viral and fungal infections, asthma, hypertension, Alzheimer's disease, malaria, and tuberculosis, our understanding of their structure-activity relationships, multifunctional mechanisms, binding modes, and biochemical properties remains limited. We explore the potential of tetrazole bioisosteres in optimising lead molecules for innovative therapies, discussing applications, trends, advantages, limitations, and challenges. Additionally, we assess future research directions to drive further progress in this field.
Collapse
Affiliation(s)
- Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Muzi Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; Institute for Health and Sport, Immunology and Translational Research, Victoria University, Werribee, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| | - John Matsoukas
- New Drug, Patras Science Park, 26500 Patras, Greece; Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, AB, T2N 4N1, Canada
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland.
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Trifonov RE, Ostrovskii VA. Tetrazoles and Related Heterocycles as Promising Synthetic Antidiabetic Agents. Int J Mol Sci 2023; 24:17190. [PMID: 38139019 PMCID: PMC10742751 DOI: 10.3390/ijms242417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Tetrazole heterocycle is a promising scaffold in drug design, and it is incorporated into active pharmaceutical ingredients of medications of various actions: hypotensives, diuretics, antihistamines, antibiotics, analgesics, and others. This heterocyclic system is metabolically stable and easily participates in various intermolecular interactions with different biological targets through hydrogen bonding, conjugation, or van der Waals forces. In the present review, a systematic analysis of the activity of tetrazole derivatives against type 2 diabetes mellitus (T2DM) has been performed. As it was shown, the tetrazolyl moiety is a key fragment of many antidiabetic agents with different activities, including the following: peroxisome proliferator-activated receptors (PPARs) agonists, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase (AR) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) agonists, G protein-coupled receptor (GPCRs) agonists, glycogen phosphorylases (GP) Inhibitors, α-glycosidase (AG) Inhibitors, sodium glucose co-transporter (SGLT) inhibitors, fructose-1,6-bisphosphatase (FBPase) inhibitors, IkB kinase ε (IKKε) and TANK binding kinase 1 (TBK1) inhibitors, and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In many cases, the tetrazole-containing leader compounds markedly exceed the activity of medications already known and used in T2DM therapy, and some of them are undergoing clinical trials. In addition, tetrazole derivatives are very often used to act on diabetes-related targets or to treat post-diabetic disorders.
Collapse
Affiliation(s)
- Rostislav E. Trifonov
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
| | - Vladimir A. Ostrovskii
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), St. Petersburg 199178, Russia
| |
Collapse
|
3
|
de Paula K, Santos JC, Mafud AC, Nascimento AS. Tetrazoles as PPARγ ligands: A structural and computational investigation. J Mol Graph Model 2021; 106:107932. [PMID: 33946041 DOI: 10.1016/j.jmgm.2021.107932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
Diabetes is an important chronic disease affecting about 10% of the adult population in the US and over 420 million people worldwide, resulting in 1.6 million deaths every year, according to the World Health Organization. The most common type of the disease, type 2 diabetes, can be pharmacologically managed using oral hypoglycemic agents or thiazolidinediones (TZDs), such as pioglitazone, which act by activating the Peroxisome Proliferated-Activated Receptor γ. Despite their beneficial effects in diabetes treatment, TZDs like rosiglitazone and troglitazone were withdrawn due to safety reasons, creating a void in the pharmacological options for the treatment of this important disease. Here, we explored a structure-based approach in the screening for new chemical probes for a deeper investigation of the effects of PPARγ activation. A class of tetrazole compounds was identified and the compounds named T1, T2 and T3 were purchased and evaluated for their ability to interact with the PPARγ ligand binding domain (LBD). The compounds were binders with micromolar range affinity, as determined by their IC50 values. A Monte Carlo simulation of the compound T2 revealed that the tetrazole ring makes favorable interaction with the polar arm of the receptor binding pocket. Finally, the crystal structure of the PPARγ-LBD-T2 complex was solved at 2.3 Å, confirming the binding mode for this compound. The structure also revealed that, when the helix H12 is mispositioned, an alternative binding conformation is observed for the ligand suggesting an H12-dependent binding conformation for the tetrazole compound.
Collapse
Affiliation(s)
- Karina de Paula
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Jademilson C Santos
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Ana Carolina Mafud
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Alessandro S Nascimento
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
4
|
Tani N, Ikeda T, Aoki Y, Shida A, Oritani S, Ishikawa T. Pathophysiological significance of clock genes BMAL1 and PER2 as erythropoietin-controlling factors in acute blood hemorrhage. Hum Cell 2019; 32:275-284. [PMID: 30941700 DOI: 10.1007/s13577-019-00248-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
This study aimed to characterize the pathophysiology, including possible correlations, of clock gene expression and erythropoietin (EPO) production in the acute stage of blood hemorrhage. Specimens of human cortical tissues (right and left kidneys) and cardiac blood were collected at autopsy from 52 cases following mortality due to acute-stage blood hemorrhage following sharp instrument injury. BMAL1 and PER2 mRNA levels were determined by reverse transcription-polymerase chain reaction; BMAL1 and PER2 protein levels were assessed using immunohistochemistry; BMAL1 protein levels were quantitatively measured by western blotting; and serum EPO levels were measured by chemiluminescent enzyme immunoassay. Separately, a rat model of hemorrhagic conditions was generated and used to confirm the results obtained with autopsy-derived specimens. A positive correlation was observed between BMAL1 protein and serum EPO levels, but not between BMAL1 mRNA levels and serum EPO levels. We also noted that Per2 mRNA expression became elevated in humans who survived for > 3 h after acute hemorrhagic events, with subsequent decreases in serum EPO levels. The rat model showed that even short (30-min) intervals of blood loss yielded increases in both Bmal1 mRNA and serum EPO levels; longer (60-min) intervals resulted in increases in Per2 mRNA expression along with decreases in serum EPO. Thus, the acute-stage human hemorrhage cases and the rat hemorrhage model yielded similar tendencies for clock gene expression and EPO secretion. In conclusion, our results indicated that clock genes are involved in the regulation of EPO production during the early stages of hypoxia/ischemia resulting from the acute hemorrhagic events.
Collapse
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan.
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan.
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Yayoi Aoki
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Alissa Shida
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Shigeki Oritani
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| |
Collapse
|
5
|
Popova EA, Trifonov RE, Ostrovskii VA. Tetrazoles for biomedicine. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4864] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|