1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Tania, Sceney M, Dutton JL. A decade of lessons in the activation of ArIL 2 species. Chem Sci 2024; 15:3784-3799. [PMID: 38487221 PMCID: PMC10935727 DOI: 10.1039/d3sc06588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Hypervalent iodine(iii) compounds of the general structure ArIL2 are widely used as oxidizing agents for a variety of applications across both organic and inorganic chemistry. Considerable work has been done on the activation of these compounds by tuning the ligands at the iodine centre. This perspective summarises the work of our and other groups on rectification of historically misidentified iodine(iii) reagents of this class, and the syntheses of activated species. Recent advances focusing on increasing the oxidative capacity of I(iii) moieties using Lewis and Brønsted acids and Lewis bases as well as the activation of halogens with I(iii) are discussed.
Collapse
Affiliation(s)
- Tania
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| | - Marcus Sceney
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| |
Collapse
|
3
|
Lanzi M, Wencel-Delord J. Diaryl hypervalent bromines and chlorines: synthesis, structures and reactivities. Chem Sci 2024; 15:1557-1569. [PMID: 38303936 PMCID: PMC10829020 DOI: 10.1039/d3sc05382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024] Open
Abstract
In the field of modern organic chemistry, hypervalent compounds have become indispensable tools for synthetic chemists, finding widespread applications in both academic research and industrial settings. While iodine-based reagents have historically dominated this research field, recent focus has shifted to the potent yet relatively unexplored chemistry of diaryl λ3-bromanes and -chloranes. Despite their unique reactivities, the progress in their development and application within organic synthesis has been hampered by the absence of straightforward, reliable, and widely applicable preparative methods. However, recent investigations have uncovered innovative approaches and novel reactivity patterns associated with these specialized compounds. These discoveries suggest that we have only begun to tap into their potential, implying that there is much more to be explored in this captivating area of chemistry.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
- Institute of Organic Chemistry, JMU Würzburg Am Hubland Würzburg Germany
| |
Collapse
|
4
|
Barwise L, Bennetts JD, White KF, Dutton JL. ArI(NTf 2) 2: the boundary of oxidative capacity for ArIL 2? Chem Commun (Camb) 2023; 59:13340-13343. [PMID: 37869995 DOI: 10.1039/d3cc04563c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Synthesis and crystallographic characterization of NO2-C6H4-I(NTf2)2 (NTf2 = bistriflimide) is reported. Experimental results find that this compound can perform oxidation reactions that ArI(OTf)2 is unable to and theoretical analysis indicates Ar-I(NTf2)2 is the most oxidizing in the ArIL2 class of compounds known and may also be the most oxidizing compound in the class practically possible.
Collapse
Affiliation(s)
- Lachlan Barwise
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Jason D Bennetts
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Keith F White
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Thai P, Frey BL, Figgins MT, Thompson RR, Carmieli R, Powers DC. Selective multi-electron aggregation at a hypervalent iodine center by sequential disproportionation. Chem Commun (Camb) 2023; 59:4308-4311. [PMID: 36939182 PMCID: PMC10089653 DOI: 10.1039/d3cc00549f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
We demonstrate that sequential disproportionation reactions can enable selective aggregation of two- or four electron-holes at a hypervalent iodine center. Disproportionation of an anodically generated iodanyl radical affords an iodosylbenzene derivative. Subsequent iodosylbenzene disproportionation can be triggered to provide access to an iodoxybenzene. These results demonstrate multielectron oxidation at the one-electron potential by selective and sequential disproportionation chemistry.
Collapse
Affiliation(s)
- Phong Thai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Brandon L Frey
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Richard R Thompson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | | | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
6
|
Sharp-Bucknall L, Sceney M, White KF, Dutton JL. Synthesis, structural characterization, reactivity and catalytic activity of mixed halo/triflate ArI(OTf)(X) species. Dalton Trans 2023; 52:3358-3370. [PMID: 36809478 DOI: 10.1039/d3dt00275f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both mixed λ3-iodoarenes and λ3-iodoarenes possessing -OTf ligands are coveted for their enhanced reactivities. Here we describe the synthesis, reactivity, and comprehensive characterisation of two new ArI(OTf)(X) species, a class of compound that were previously only invoked as reactive intermediates where X = Cl, F and their divergent reactivity with aryl substrates. A new catalytic system for electrophilic chlorination of deactivated arenes using Cl2 as the chlorine source and ArI/HOTf as the catalyst is also described.
Collapse
Affiliation(s)
| | - Marcus Sceney
- Department of Chemistry, La Trobe University, Melbourne, Victoria, Australia.
| | - Keith F White
- Department of Chemistry, La Trobe University, Melbourne, Victoria, Australia.
| | - Jason L Dutton
- Department of Chemistry, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Shiri F, Ariafard A. Mechanistic details for oxidative addition of PhICl 2 to gold( i) complexes. Chem Commun (Camb) 2023; 59:4668-4671. [PMID: 36994794 DOI: 10.1039/d3cc00543g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our study discovered a new stepwise mechanism for the oxidative addition of PhICl2 to LAuAr. Fewer electron-withdrawing substituents on the Ar ligand increase the energy of Au(i) dx2−y2 orbital, making the reaction easier to achieve.
Collapse
Affiliation(s)
- Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
- School of Natural Science (Chemistry), University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| |
Collapse
|
8
|
Sharp‐Bucknall L, Tania, Dutton JL. Synthesis and Structural Verification of an ArI(OTf) 2 , NO 2 -Ph-I(OTf) 2. Angew Chem Int Ed Engl 2022; 61:e202212380. [PMID: 36104294 PMCID: PMC9828558 DOI: 10.1002/anie.202212380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/12/2023]
Abstract
PhI(OTf)2 and related ArI(OTf)2 species have been incorrectly invoked as intermediates in oxidation reactions for many years. We recently established that such compounds did not yet exist but remain an attractive target. Here we describe the synthesis, isolation, and structural characterization of NO2 -PhI(OTf)2, which is resistant to decomposition and more reactive than PhI(OTf)(OAc), the species previously misidentified as PhI(OTf)2 .
Collapse
Affiliation(s)
| | - Tania
- Department of Biochemistry and ChemistryLa Trobe UniversityMelbourneVictoriaAustralia
| | - Jason L. Dutton
- Department of Biochemistry and ChemistryLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment I. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
10
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Davis BA, Tania, Dutton JL. Kinetic study on the activation of PhICl 2 with Lewis bases for aromatic chlorination. Dalton Trans 2022; 51:12384-12388. [PMID: 35912852 DOI: 10.1039/d2dt01842j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study on the kinetics of the activation of PhICl2 using catalytic chloride or pyridine in electrophilic chlorination of arenes has been carried out. The results indicate that both catalysts induce the release of Cl2 from PhICl2 and that the Cl2 is the active reagent for chlorination in these reactions.
Collapse
Affiliation(s)
- Benjamin A Davis
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Tania
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Frey BL, Figgins MT, Van Trieste GP, Carmieli R, Powers DC. Iodine-Iodine Cooperation Enables Metal-Free C-N Bond-Forming Electrocatalysis via Isolable Iodanyl Radicals. J Am Chem Soc 2022; 144:13913-13919. [PMID: 35856717 DOI: 10.1021/jacs.2c05562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecule redox mediators convey interfacial electron transfer events into bulk solution and can enable diverse substrate activation mechanisms in synthetic electrocatalysis. Here, we report that 1,2-diiodo-4,5-dimethoxybenzene is an efficient electrocatalyst for C-H/E-H coupling that operates at as low as 0.5 mol % catalyst loading. Spectroscopic, crystallographic, and computational results indicate a critical role for a three-electron I-I bonding interaction in stabilizing an iodanyl radical intermediate (i.e., formally I(II) species). As a result, the optimized catalyst operates at more than 100 mV lower potential than the related monoiodide catalyst 4-iodoanisole, which results in improved product yield, higher Faradaic efficiency, and expanded substrate scope. The isolated iodanyl radical is chemically competent in C-N bond formation. These results represent the first examples of substrate functionalization at a well-defined I(II) derivative and bona fide iodanyl radical catalysis and demonstrate one-electron pathways as a mechanistic alternative to canonical two-electron hypervalent iodine mechanisms. The observation establishes I-I redox cooperation as a new design concept for the development of metal-free redox mediators.
Collapse
Affiliation(s)
- Brandon L Frey
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gerard P Van Trieste
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Shetgaonkar SE, Raju A, China H, Takenaga N, Dohi T, Singh FV. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents. Front Chem 2022; 10:909250. [PMID: 35844643 PMCID: PMC9283985 DOI: 10.3389/fchem.2022.909250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Transition metal-catalyzed direct oxidative coupling reactions via C–H bond activation have emerged as a straightforward strategy for the construction of complex molecules in organic synthesis. The direct transformation of C–H bonds into carbon–carbon and carbon–heteroatom bonds renders the requirement of prefunctionalization of starting materials and, therefore, represents a more efficient alternative to the traditional cross-coupling reactions. The key to the unprecedented progress made in this area has been the identification of an appropriate oxidant that facilitates oxidation and provides heteroatom ligands at the metal center. In this context, hypervalent iodine compounds have evolved as mainstream reagents particularly because of their excellent oxidizing nature, high electrophilicity, and versatile reactivity. They are environmentally benign reagents, stable, non-toxic, and relatively cheaper than inorganic oxidants. For many years, palladium catalysis has dominated these oxidative coupling reactions, but eventually, other transition metal catalysts such as gold, copper, platinum, iron, etc. were found to be promising alternate catalysts for facilitating such reactions. This review article critically summarizes the recent developments in non-palladium-catalyzed oxidative coupling reactions mediated by hypervalent iodine (III) reagents with significant emphasis on understanding the mechanistic aspects in detail.
Collapse
Affiliation(s)
| | - Aleena Raju
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
| | - Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| |
Collapse
|
14
|
Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123900. [PMID: 35745020 PMCID: PMC9230104 DOI: 10.3390/molecules27123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of polyvalent iodine compounds has piqued the interest of researchers due to their role as important and flexible reagents in synthetic organic chemistry, resulting in a broad variety of useful organic molecules. These chemicals have potential uses in various functionalization procedures due to their non-toxic and environmentally friendly properties. As they are also strong electrophiles and potent oxidizing agents, the use of hypervalent iodine reagents in palladium-catalyzed transformations has received a lot of attention in recent years. Extensive research has been conducted on the subject of C—H bond functionalization by Pd catalysis with hypervalent iodine reagents as oxidants. Furthermore, the iodine(III) reagent is now often used as an arylating agent in Pd-catalyzed C—H arylation or Heck-type cross-coupling processes. In this article, the recent advances in palladium-catalyzed oxidative cross-coupling reactions employing hypervalent iodine reagents are reviewed in detail.
Collapse
|
15
|
Rani N, Soni R, Sihag M, Kinger M, Aneja DK. Combined Approach of Hypervalent Iodine Reagents and Transition Metals in Organic Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neha Rani
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Rinku Soni
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Monika Sihag
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Deepak K. Aneja
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| |
Collapse
|
16
|
Tania, Molino A, Sharp-Bucknall L, Wilson DJD, Dutton JL. On the potential intermediacy of PhIBr 2 as a brominating agent. Org Biomol Chem 2022; 20:8454-8460. [DOI: 10.1039/d2ob01418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PhIBr2 has been invoked as a brominating agent, however PhIBr2 does not appear to exist but rather forms PhI and Br2, with Br2 being responsible for bromination.
Collapse
Affiliation(s)
- Tania
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Lachlan Sharp-Bucknall
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - David J. D. Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Jason L. Dutton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| |
Collapse
|
17
|
Dadkhah Aseman M, Nikravesh M, Abbasi A, Shahsavari HR. Oxidative Addition of a Hypervalent Iodine Compound to Cycloplatinated(II) Complexes for the C-O Bond Construction: Effect of Cyclometalated Ligands. Inorg Chem 2021; 60:18822-18831. [PMID: 34855391 DOI: 10.1021/acs.inorgchem.1c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex [PtMe(Obpy)(OAc)2(H2O)], 2a, Obpy = 2,2'-bipyridine N-oxide, is prepared through the reaction of [PtMe(Obpy)(SMe2)], 1a, by 1 equiv of PhI(OAc)2 via an oxidative addition (OA) reaction. Pt(IV) complex 2a attends the process of C-O bond reductive elimination (RE) reaction to form methyl acetate and corresponding Pt(II) complex [Pt(Obpy)(OAc)(H2O)], 3a. The kinetic of OA and RE reactions are investigated by means of different spectroscopies. The obtained results show that the reaction rates of OA step of 1a are faster than its analogous complex [PtMe(ppy)(SMe2)], 1b, ppy = 2-phenylpyridine. The density functional theory (DFT) calculations signify that the OA reaction initiated by a nucleophilic attack of the platinum(II) central atom of 1b on the iodine(III) atom while it had commenced by a nucleophilic substitution reaction of coordinated SMe2 in 1a with a carbonyl oxygen atom of PhI(OAc)2. Our calculation revealed that the key step for 1a is an acetate transfer from the I(III) to Pt(II) through a formation of square pyramidal iodonium complex. This can be attributed to the more electron-withdrawing character of Obpy ligand than to ppy which reduces the nucleophilicity of Pt atom in 1a. Furthermore, 2a with electron-withdrawing Obpy ligand prone to C-O bond formation faster than complex [PtMe(ppy)(OAc)2(H2O)], 2b, with an electron-rich ppy ligand which conforms to the anticipation that REs occur faster on electron-poor metal centers.
Collapse
Affiliation(s)
- Marzieh Dadkhah Aseman
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 15719-14911, Iran
| | - Mahshid Nikravesh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran 14155-6455, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
18
|
Oliveira VP, Marcial BL, Machado FBC, Kraka E. Relating Bond Strength and Nature to the Thermodynamic Stability of Hypervalent Togni-Type Iodine Compounds. Chempluschem 2021; 86:1199-1210. [PMID: 34437775 DOI: 10.1002/cplu.202100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/09/2021] [Indexed: 11/08/2022]
Abstract
The bond strength and nature of a set of 32 Togni-like reagents have been investigated at the M062X/def2-TZVP(D) level of theory in acetonitrile described with the SMD continuum solvent model, to rationalize the main factors responsible for their thermodynamic stability in different conformations, and trifluoromethylation capabilities. For the assessment of bond strength, we utilized local stretching force constants and associated bond strength orders, complemented with local features of the electron density to access the nature of the bonds. Bond dissociation energies varied from 31.6 to 79.9 kcal/mol depending on the polarizing power of the ligand trans to CF3 . Based on the analysis of the Laplacian of the density, we propose that the charge-shift bond character plays an important role in the stability of the molecules studied, especially for those containing I-O bonds. New insights on the trans influence and on possible ways to fine-tune the stability of these reagents are provided.
Collapse
Affiliation(s)
- Vytor Pinheiro Oliveira
- Instituto Tecnológico de Aeronáutica (ITA), Departamento de Química, São José dos Campos, 12228-900, São Paulo, Brazil
| | - Bruna Luana Marcial
- Instituto Federal Goiano (IF Goiano), Núcleo de Química, Campus Morrinhos, Goiás, Brazil
| | - Francisco B C Machado
- Instituto Tecnológico de Aeronáutica (ITA), Departamento de Química, São José dos Campos, 12228-900, São Paulo, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas, 75275-0314, USA
| |
Collapse
|
19
|
Tania, Poynder TB, Kaur A, Barwise L, Houston SD, Nair AJ, Clegg JK, Wilson DJD, Dutton JL. PhICl 2 is activated by chloride ions. Dalton Trans 2021; 50:11986-11991. [PMID: 34378593 DOI: 10.1039/d1dt02565a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A study on the potential activating role of pyridine in the electrophilic chlorination of anisole by PhICl2 has led to the discovery that soluble sources of chloride ions activate PhICl2 in the reaction at catalytic loadings, greatly increasing the rate of chlorination. It is further shown that presence of chloride increases the rate of decomposition of PhICl2 into PhI and Cl2. The specific mechanism by which chloride induces electrophilic chlorination and decomposition of PhICl2 remains an open question.
Collapse
Affiliation(s)
- Tania
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Tiffany B Poynder
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Lachlan Barwise
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Sevan D Houston
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Akshay J Nair
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Shibata K, Takao KI, Ogura A. Diaryliodonium Salt-Based Synthesis of N-Alkoxyindolines and Further Insights into the Ishikawa Indole Synthesis. J Org Chem 2021; 86:10067-10087. [PMID: 34197104 DOI: 10.1021/acs.joc.1c00820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diaryliodonium salt-based strategy enabled the first systematic synthesis of rarely accessible N-alkoxyindolines. Mechanistic analyses suggested that the reaction likely involves reductive elimination of iodobenzene from iodaoxazepine via a four-membered transition state, followed by Meisenheimer rearrangement. Substrates with N-carbamate protection afforded indole in a manner similar to that of the Ishikawa indole synthesis. Preinstallation of a stannyl group as an iodonium salt precursor greatly expanded the substrate scope, and further mechanistic insights are discussed.
Collapse
Affiliation(s)
- Kouhei Shibata
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
21
|
Li G, Rheingold AL, Protasiewicz JD. Remote Substituents as Potential Control Elements for the Solid-State Structures of Hypervalent Iodine(III) Compounds. Inorg Chem 2021; 60:7865-7875. [PMID: 33970618 DOI: 10.1021/acs.inorgchem.1c00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hypervalent iodine (HVI) compounds are very important selective oxidants often employed in organic syntheses. Most HVI compounds are strongly associated in the solid state involving interactions between the electropositive iodine centers and nearby electron lone pairs of electronegative atoms. This study examines the impact of remote substituents on select families of HVI compounds as means to achieve predictable two-dimensional extended solid-state materials. Crystallographic analyses of 10 HVI compounds from several related classes of λ3 organoiodine(III) compounds, (diacetoxyiodo)benzenes, (dibenzoatoiodo)benzenes, [bis(trifluoroacetoxy)iodo]benzenes, and μ-oxo-[(carboxylateiodo)benzenes], provide insights into how remote substituents and the choice of carboxylate groups can impact intermolecular interactions in the solid state.
Collapse
Affiliation(s)
- Guobi Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92903, United States
| | - John D Protasiewicz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
22
|
Poynder TB, Houston SD, Dutton JL. [Ag]
2
[B
12
Cl
12
] as a Catalyst in PhICl
2
Mediated Chlorination**. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiffany B. Poynder
- Department of Chemistry and Physics La Trobe University Melbourne Victoria Australia
| | - Sevan D. Houston
- Department of Chemistry and Physics La Trobe University Melbourne Victoria Australia
| | - Jason L. Dutton
- Department of Chemistry and Physics La Trobe University Melbourne Victoria Australia
| |
Collapse
|
23
|
Poynder TB, Chamorro Orué AI, Tania, Sharp-Bucknall L, Flynn MT, Wilson DJD, Athukorala Arachchige KS, Clegg JK, Dutton JL. On the activation of PhICl 2 with pyridine. Chem Commun (Camb) 2021; 57:4970-4973. [PMID: 33881069 DOI: 10.1039/d1cc01567b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been previously proposed that pyridines can activate PhICl2 by displacing a chloride and forming the [PhI(Pyr)(Cl)]+ cation as a reactive intermediate. Here we show that pyridine does not displace chloride, but rather forms a weak complex with the iodine via halogen bonding along the C-I bond axis. This interaction is interrogated by NMR, structural, charge density, and theoretical investigations, which all indicate that pyridine does not activate PhICl2 as proposed.
Collapse
Affiliation(s)
- Tiffany B Poynder
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Analia I Chamorro Orué
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tania
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Lachlan Sharp-Bucknall
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Matthew T Flynn
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | | | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
24
|
Abdolalian P, Tizhoush SK, Farshadfar K, Ariafard A. The role of hypervalent iodine(iii) reagents in promoting alkoxylation of unactivated C(sp 3)-H bonds catalyzed by palladium(ii) complexes. Chem Sci 2021; 12:7185-7195. [PMID: 34123345 PMCID: PMC8153247 DOI: 10.1039/d1sc01230d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)-H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)-H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd-C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C-O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X- anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG ‡ 0-6 kcal mol-1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)-Pd(iv)-Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.
Collapse
Affiliation(s)
- Payam Abdolalian
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Samaneh K Tizhoush
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
- School of Natural Sciences - Chemistry, University of Tasmania Private Bag 75 Hobart TAS 7001 Australia
| |
Collapse
|
25
|
Tierno AF, Walters JC, Vazquez-Lopez A, Xiao X, Wengryniuk SE. Heterocyclic group transfer reactions with I(iii) N-HVI reagents: access to N-alkyl(heteroaryl)onium salts via olefin aminolactonization. Chem Sci 2021; 12:6385-6392. [PMID: 34084438 PMCID: PMC8115303 DOI: 10.1039/d1sc00187f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
Pyridinium and related N-alkyl(heteroaryl)onium salts are versatile synthetic intermediates in organic chemistry, with applications ranging from ring functionalizations to provide diverse piperidine scaffolds to their recent emergence as radical precursors in deaminative cross couplings. Despite their ever-expanding applications, methods for their synthesis have seen little innovation, continuing to rely on a limited set of decades old transformations and a limited subset of coupling partners. Herein, we leverage (bis)cationic nitrogen-ligated I(iii) hypervalent iodine reagents, or N-HVIs, as "heterocyclic group transfer reagents" to provide access to a broad scope of N-alkyl(heteroaryl)onium salts via the aminolactonization of alkenoic acids, the first example of engaging an olefin to directly generate these salts. The reactions proceed in excellent yields, under mild conditions, and are capable of incorporating a broad scope of sterically and electronically diverse aromatic heterocycles. The N-HVI reagents can be generated in situ, the products isolated via simple trituration, and subsequent derivatizations demonstrate the power of this platform for diversity-oriented synthesis of 6-membered nitrogen heterocycles.
Collapse
Affiliation(s)
- Anthony F Tierno
- Department of Chemistry, Towson University 8000 York Road, Towson Maryland USA 21252
| | - Jennifer C Walters
- Department of Chemistry, Temple University 1901 North 13th Street Philadelphia Pennsylvania USA 19122
| | - Andres Vazquez-Lopez
- Department of Chemistry, Temple University 1901 North 13th Street Philadelphia Pennsylvania USA 19122
| | - Xiao Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 China
| | - Sarah E Wengryniuk
- Department of Chemistry, Temple University 1901 North 13th Street Philadelphia Pennsylvania USA 19122
| |
Collapse
|
26
|
Abstract
We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.
Collapse
|
27
|
Saha D, Taily IM, Naik S, Banerjee P. Electrochemical access to benzimidazolone and quinazolinone derivatives via in situ generation of isocyanates. Chem Commun (Camb) 2021; 57:631-634. [PMID: 33346276 DOI: 10.1039/d0cc07125k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Isocyanates are the key intermediates for several organic transformations towards the synthesis of diverse pharmaceutical targets. Herein, we report the development of an oxidant-free protocol for electrochemical in situ generation of isocyanates. This strategy highlights expedient access to benzimidazolones and quinazolinones and eliminates the need for exogenous oxidants. Furthermore, detailed mechanistic studies provide strong support towards our hypothesis of in situ isocyanate generation.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sumitra Naik
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
28
|
Tania, Houston SD, Sharp-Bucknall L, Poynder TB, Albayer M, Dutton JL. PhI(OTf) 2 Does Not Exist (Yet)*. Chemistry 2020; 26:15863-15866. [PMID: 32959910 DOI: 10.1002/chem.202003819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/28/2022]
Abstract
PhI(OTf)2 has been used for the past 30 years as a strong I(III) oxidant for organic and inorganic transformations. It has been reported to be generated in situ from the reactions of either PhI(OAc)2 or PhI=O with two equivalents of trimethylsilyl trifluoromethanesulfonate (TMS-OTf). In this report it is shown that neither of these reactions generate a solution with spectroscopic data consistent with PhI(OTf)2 , with supporting theoretical calculations, and thus this compound should not be invoked as the species acting as the oxidant for transformations that have been associated with its use.
Collapse
Affiliation(s)
- Tania
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Sevan D Houston
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Lachlan Sharp-Bucknall
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Tiffany B Poynder
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Mohammad Albayer
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Shetgaonkar SE, Singh FV. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Front Chem 2020; 8:705. [PMID: 33134246 PMCID: PMC7553084 DOI: 10.3389/fchem.2020.00705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Hypervalent iodine compounds are valuable and versatile reagents in synthetic organic chemistry, generating a diverse array of useful organic molecules. Owing to their non-toxic and environmentally friendly features, these reagents find potential applications in various oxidative functionalization reactions. In recent years, the use of hypervalent iodine reagents in palladium-catalyzed transformations has been widely studied as they are strong electrophiles and powerful oxidizing agents. For instance, extensive work has been carried out in the field of C–H bond functionalization via Pd-catalysis using hypervalent iodine reagents as oxidants. In addition, nowadays, iodine(III) reagents have been frequently employed as arylating agents in Pd-catalyzed C–H arylation or Heck-type cross-coupling reactions. In this review, recent advancements in the area of palladium-catalyzed oxidative cross-coupling reactions using hypervalent iodine reagents are summarized in detail.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| | - Fateh V Singh
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
30
|
Jeyakannu P, Chandru Senadi G, Chiang C, Kumar Dhandabani G, Chang Y, Wang J. An Efficient Approach to Functionalized Indoles from λ
3
‐Iodanes via Acyloxylation and Acyl Transfer. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Palaniraja Jeyakannu
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and TechnologySRM Institute of Science and Technology, Kattankulathur Chennai 603203 India
| | - Chun‐Hsien Chiang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Ganesh Kumar Dhandabani
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Yu‐Ching Chang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
31
|
Shreiber ST, DiMucci IM, Khrizanforov MN, Titus CJ, Nordlund D, Dudkina Y, Cramer RE, Budnikova Y, Lancaster KM, Vicic DA. [(MeCN)Ni(CF 3) 3] - and [Ni(CF 3) 4] 2-: Foundations toward the Development of Trifluoromethylations at Unsupported Nickel. Inorg Chem 2020; 59:9143-9151. [PMID: 32573210 DOI: 10.1021/acs.inorgchem.0c01020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nickel anions [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2- were prepared by the formal addition of 3 and 4 equiv, respectively, of AgCF3 to [(dme)NiBr2] in the presence of the [PPh4]+ counterion. Detailed insights into the electronic properties of these new compounds were obtained through the use of density functional theory (DFT) calculations, spectroscopy-oriented configuration interaction (SORCI) calculations, X-ray absorption spectroscopy, and cyclic voltammetry. The data collectively show that trifluoromethyl complexes of nickel, even in the most common oxidation state of nickel(II), are highly covalent systems whereby a hole is distributed on the trifluoromethyl ligands, surprisingly rendering the metal to a physically more reduced state. In the cases of [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2-, these complexes are better physically described as d9 metal complexes. [(MeCN)Ni(CF3)3]- is electrophilic and reacts with other nucleophiles such as phenoxide to yield the unsupported [(PhO)Ni(CF3)3]2- salt, revealing the broader potential of [(MeCN)Ni(CF3)3]- in the development of "ligandless" trifluoromethylations at nickel. Proof-in-principle experiments show that the reaction of [(MeCN)Ni(CF3)3]- with an aryl iodonium salt yields trifluoromethylated arene, presumably via a high-valent, unsupported, and formal organonickel(IV) intermediate. Evidence of the feasibility of such intermediates is provided with the structurally characterized [PPh4]2[Ni(CF3)4(SO4)], which was derived through the two-electron oxidation of [Ni(CF3)4]2-.
Collapse
Affiliation(s)
- Scott T Shreiber
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Mikhail N Khrizanforov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russian Federation
| | - Charles J Titus
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yulia Dudkina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russian Federation
| | - Roger E Cramer
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Yulia Budnikova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russian Federation
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - David A Vicic
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
32
|
Abazid AH, Clamor N, Nachtsheim BJ. An Enantioconvergent Benzylic Hydroxylation Using a Chiral Aryl Iodide in a Dual Activation Mode. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02321] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ayham H. Abazid
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Nils Clamor
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Boris J. Nachtsheim
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
33
|
Zhang B, Yan X, Guo S. Synthesis of Well-Defined High-Valent Palladium Complexes by Oxidation of Their Palladium(II) Precursors. Chemistry 2020; 26:9430-9444. [PMID: 32227537 DOI: 10.1002/chem.202001074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Indexed: 12/24/2022]
Abstract
The last decade has witnessed the rapid development of high-valent Pd-involved organic transformations. This has also led to a steadily growing number of publications concerning the preparation of isolable and characterizable palladium(III) and palladium(IV) complexes. A variety of one-electron and two-electron oxidants have been employed to give access to high-oxidation-state Pd compounds. Undoubtedly, the study of these stoichiometric reactions has great implications for relevant Pd-mediated catalysis. In this minireview, the focus is on the synthetic approaches to structurally determined PdIII/IV complexes starting from their PdII precursors, and the advances in this research area from early 2010 to late 2019 will be highlighted. Chemical oxidations exploiting various oxidizing agents including 1) hypervalent iodine reagents; 2) halogens; 3) electrophilic fluorination reagents; 4) alkyl/aryl halides; 5) ferrocenium salts; 6) peroxides/O2 ; 7) sulfonyl chlorides; and 8) others are covered. A "greener" electrooxidation manner has also been reviewed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Xuechao Yan
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Shuai Guo
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| |
Collapse
|
34
|
Maity A, Frey BL, Hoskinson ND, Powers DC. Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates. J Am Chem Soc 2020; 142:4990-4995. [DOI: 10.1021/jacs.9b13918] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Asim Maity
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brandon L. Frey
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nathanael D. Hoskinson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
35
|
Albayer M, Sharp-Bucknall L, Withanage N, Armendariz-Vidales G, Hogan CF, Dutton JL. Metathesis Reactions between Heavy d-8 Fluorides and I(III)–Pyridine Complexes. Inorg Chem 2020; 59:2765-2770. [DOI: 10.1021/acs.inorgchem.9b03125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Albayer
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lachlan Sharp-Bucknall
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Nilan Withanage
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Georgina Armendariz-Vidales
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Conor F. Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Jason L. Dutton
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| |
Collapse
|
36
|
Smith SM, Planas O, Gómez L, Rath NP, Ribas X, Mirica LM. Aerobic C-C and C-O bond formation reactions mediated by high-valent nickel species. Chem Sci 2019; 10:10366-10372. [PMID: 32110325 PMCID: PMC6984385 DOI: 10.1039/c9sc03758f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
Nickel complexes have been widely employed as catalysts in C-C and C-heteroatom bond formation reactions. While Ni(0), Ni(i), and Ni(ii) intermediates are most relevant in these transformations, recently Ni(iii) and Ni(iv) species have also been proposed to play a role in catalysis. Reported herein is the synthesis, detailed characterization, and reactivity of a series of Ni(ii) and Ni(iii) metallacycle complexes stabilized by tetradentate pyridinophane ligands with various N-substituents. Interestingly, while the oxidation of the Ni(ii) complexes with various other oxidants led to exclusive C-C bond formation in very good yields, the use of O2 or H2O2 as oxidants led to formation of appreciable amounts of C-O bond formation products, especially for the Ni(ii) complex supported by an asymmetric pyridinophane ligand containing one tosyl N-substituent. Moreover, cryo-ESI-MS studies support the formation of several high-valent Ni species as key intermediates in this uncommon Ni-mediated oxygenase-type chemistry.
Collapse
Affiliation(s)
- Sofia M Smith
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130-4899 , USA
| | - Oriol Planas
- Departament de Química , Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , Campus de Montilivi , Girona E-17003 , Catalonia , Spain
| | - Laura Gómez
- Serveis Tècnics de Recerca (STR) , Universitat de Girona , Parc Científic i Tecnològic , Girona E-17071 , Catalonia , Spain
| | - Nigam P Rath
- Department of Chemistry and Biochemistry , University of Missouri-St. Louis , One University Boulevard , St. Louis , Missouri 63121-4400 , USA
| | - Xavi Ribas
- Departament de Química , Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , Campus de Montilivi , Girona E-17003 , Catalonia , Spain
| | - Liviu M Mirica
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue , Urbana , Illinois 61801 , USA . .,Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130-4899 , USA
| |
Collapse
|
37
|
|
38
|
Jimoh AA, Hosseyni S, Ye X, Wojtas L, Hu Y, Shi X. Gold redox catalysis for cyclization/arylation of allylic oximes: synthesis of isoxazoline derivatives. Chem Commun (Camb) 2019; 55:8150-8153. [PMID: 31241086 PMCID: PMC6641983 DOI: 10.1039/c9cc02830g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Base-assisted diazonium activation has been employed to promote gold(i)/(iii) redox catalysis toward allylic oxime cyclization/aryl coupling. Functional isoxazolines were prepared with good to excellent yields, while the alternative photoactivation method provided trace amounts of the isoxazoline products. This study further broadens the scope of gold redox chemistry.
Collapse
Affiliation(s)
- Abiola Azeez Jimoh
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The intrinsic bonding nature of λ 3 -iodanes was investigated to determine where its hypervalent bonds fit along the spectrum between halogen bonding and covalent bonding. Density functional theory with an augmented Dunning valence triple zeta basis set ( ω B97X-D/aug-cc-pVTZ) coupled with vibrational spectroscopy was utilized to study a diverse set of 34 hypervalent iodine compounds. This level of theory was rationalized by comparing computational and experimental data for a small set of closely-related and well-studied iodine molecules and by a comparison with CCSD(T)/aug-cc-pVTZ results for a subset of the investigated iodine compounds. Axial bonds in λ 3 -iodanes fit between the three-center four-electron bond, as observed for the trihalide species IF 2 − and the covalent FI molecule. The equatorial bonds in λ 3 -iodanes are of a covalent nature. We explored how the equatorial ligand and axial substituents affect the chemical properties of λ 3 -iodanes by analyzing natural bond orbital charges, local vibrational modes, the covalent/electrostatic character, and the three-center four-electron bonding character. In summary, our results show for the first time that there is a smooth transition between halogen bonding → 3c–4e bonding in trihalides → 3c–4e bonding in hypervalent iodine compounds → covalent bonding, opening a manifold of new avenues for the design of hypervalent iodine compounds with specific properties.
Collapse
|
40
|
Corbo R, Dutton JL. Weiss’ Reagents: A synthetically useful class of iodine(III) coordination compounds. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
42
|
Sousa e Silva FC, Bloomer BJ, Wengryniuk SE. Reactivity of (NNN)-pincer nickel(II) aryl complex towards oxidative carbon-heteroatom bond formation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Boelke A, Finkbeiner P, Nachtsheim BJ. Atom-economical group-transfer reactions with hypervalent iodine compounds. Beilstein J Org Chem 2018; 14:1263-1280. [PMID: 29977394 PMCID: PMC6009129 DOI: 10.3762/bjoc.14.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 12/02/2022] Open
Abstract
Hypervalent iodine compounds, in particular aryl-λ3-iodanes, have been used extensively as electrophilic group-transfer reagents. Even though these compounds are superior substrates in terms of reactivity and stability, their utilization is accompanied by stoichiometric amounts of an aryl iodide as waste. This highly nonpolar side product can be tedious to separate from the desired target molecules and significantly reduces the overall atom efficiency of these transformations. In this short review, we want to give a brief summary of recently developed methods, in which this arising former waste is used as an additional reagent in cascade transformations to generate multiple substituted products in one step and with high atom efficiency.
Collapse
Affiliation(s)
- Andreas Boelke
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Peter Finkbeiner
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
44
|
Walters JC, Tierno AF, Dubin AH, Wengryniuk SE. (Poly)cationic λ 3-Iodane Mediated Oxidative Ring Expansion of Secondary Alcohols. European J Org Chem 2018; 2018:1460-1464. [PMID: 30147437 PMCID: PMC6107298 DOI: 10.1002/ejoc.201800118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 11/07/2022]
Abstract
Herein, we report a simplified approach to the synthesis of medium-ring ethers through the electrophilic activation of secondary alcohols with (poly)cationic λ3-iodanes (N-HVI). Excellent levels of selectivity are achieved for C-O bond migration over established α-elimination pathways, enabled by the unique reactivity of a novel 2-OMe-pyridine-ligated N-HVI. The resulting HFIP-acetals are readily derivatized with a range of nucleophiles, providing a versatile functional handle for subsequent manipulations. The utility of this methodology for late-stage natural product derivatization was also demonstrated, providing a new tool for diversity-oriented synthesis and complexity-to-diversity (CTD) efforts. Preliminary mechanistic investigations reveal a strong effect of alcohol conformation on reactive pathway, thus providing a predictive power in the application of this approach to complex molecule synthesis.
Collapse
Affiliation(s)
- Jennifer C Walters
- Department of Chemistry, Temple University, 1901 N. 13 St. Philadelphia, PA 19122
| | - Anthony F Tierno
- Department of Chemistry, Temple University, 1901 N. 13 St. Philadelphia, PA 19122
| | - Aimee H Dubin
- Department of Chemistry, Temple University, 1901 N. 13 St. Philadelphia, PA 19122
| | - Sarah E Wengryniuk
- Department of Chemistry, Temple University, 1901 N. 13 St. Philadelphia, PA 19122
| |
Collapse
|
45
|
Le Bras J, Muzart J. C-O Bonds from Pd-Catalyzed C(sp3)-H Reactions Mediated by Heteroatomic Groups. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jean Le Bras
- Institut de Chimie Moléculaire de Reims, UMR 7312; CNRS - Université de Reims - Champagne-Ardenne; B.P. 1039 51687 Reims Cedex 2 France
| | - Jacques Muzart
- Institut de Chimie Moléculaire de Reims, UMR 7312; CNRS - Université de Reims - Champagne-Ardenne; B.P. 1039 51687 Reims Cedex 2 France
| |
Collapse
|
46
|
Albayer M, Dutton JL. Reactions of Trivalent Iodine Reagents with Classic Iridium and Rhodium Complexes. Aust J Chem 2017. [DOI: 10.1071/ch17173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, the reactions of iodine(iii) reagents (PhI(L)2: L = pyridine, acetate (OAc−), triflate (OTf−)) with iridium(i) and rhodium(i) complexes (Vaskas’s compound, Wilkinson’s catalyst, and bis[bis(diphenylphosphino)ethane]rhodium(i) triflate) are reported. In all cases, the reactions resulted in two-electron oxidation of the metal complexes. Mixtures of products were observed in the reactions of Iiii reagents with Vaska’s compound and Wilkinson’s catalyst via ligand exchange and anion scrambling. In the case of reacting Iiii reagents with chelating ligand-containing bis[bis(diphenylphosphino)ethane]rhodium(i) triflate, no scrambling was observed.
Collapse
|