1
|
Liu P, Gongpan P, Wu SL, Li XY, Huang XY, Ma YB, Geng CA. New labdane diterpenoids from Alpinia galanga: A new type of GLP-1 secretagogues targeting the PKA-CREB and PI3K-Akt signaling axes. Arch Pharm (Weinheim) 2024; 357:e2400383. [PMID: 39031533 DOI: 10.1002/ardp.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) secretagogues are fascinating pharmacotherapies to overcome the defects of GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors in treating diabetes and obesity. To discover new GLP-1 secretagogues from natural sources, alpigalangols A-Q (1-17), 17 new labdane diterpenoids including four unusual nor-labdane and N-containing ones, were isolated from the fruits of Alpinia galanga. Most of the isolates showed GLP-1 promotive effects in NCl-H716 cells, of which compounds 3, 4, 12, and 14-17 were revealed with high promoting rates of 246.0%-413.8% at 50 µM. A mechanistic study manifested that the most effective compound 12 upregulated the mRNA expression of Gcg and Pcsk1, and the protein phosphorylation of PKA, CREB, and GSK3β, but was inactive on GPBAR and GPR119 receptors. Network pharmacology analysis indicated that the PI3K-Akt pathway was involved in the GLP-1 stimulation of 12, which was highly associated with AKT1, CASP3, PPARG, and ICAM1 proteins. This study suggests that A. galanga is rich in diverse labdane diterpenoids with GLP-1 promoting effects, representing a new type of antidiabetic candidates from natural sources.
Collapse
Affiliation(s)
- Pei Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Pianchou Gongpan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Sheng-Li Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Yu Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiao-Yan Huang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Yun-Bao Ma
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Chang-An Geng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| |
Collapse
|
2
|
Youn I, Han AR, Piao D, Lee H, Kwak H, Lee Y, Nam JW, Seo EK. Phytochemical and pharmacological properties of the genus Alpinia from 2016 to 2023. Nat Prod Rep 2024; 41:1346-1367. [PMID: 38717742 DOI: 10.1039/d4np00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.
Collapse
Affiliation(s)
- Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Donglan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hwaryeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunkyung Kwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Yeju Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Zhou B, Guo MJ, Zhao XM, Li XL, Liu SH, Shen XC, Zhang NL. Terpenoids from Alpinia galanga and their acetylcholinesterase inhibitory activity. Nat Prod Res 2024:1-8. [PMID: 38683975 DOI: 10.1080/14786419.2024.2346269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
A new labdane diterpene (1), two new norsesquiterpenoids (2-3), as well as eight known terpenoids (4-11) were isolated from the seeds of Alpinia galanga (Zingiberaceae). Their structures and absolute configurations were elucidated by 1D, 2D NMR, MS, and comparison of their experimental and calculated electronic circular dichroism (ECD). The acetylcholinesterase (AChE) inhibitory activities of all the isolated compounds (1-11) were evaluated and the result showed that compounds 6 and 9 had inhibitory activity against AChE, with IC50 values at 295.70 and 183.91 μM, whereas other compounds did not show any inhibitory activity.
Collapse
Affiliation(s)
- Bo Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Meng-Jia Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xin-Man Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiao-Long Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shao-Huan Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Nen-Ling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
5
|
Forzato C, Nitti P. New Diterpenes with Potential Antitumoral Activity Isolated from Plants in the Years 2017-2022. PLANTS (BASEL, SWITZERLAND) 2022; 11:2240. [PMID: 36079622 PMCID: PMC9460660 DOI: 10.3390/plants11172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Diterpenes represent a wider class of isoprenoids, with more than 18,000 isolated compounds, and are present in plants, fungi, bacteria, and animals in both terrestrial and marine environments. Here, we report on the fully characterised structures of 251 new diterpenes, isolated from higher plants and published from 2017, which are shown to have antitumoral activity. An overview on the most active compounds, showing IC50 < 20 μM, is provided for diterpenes of different classes. The most active compounds were extracted from 29 different plant families; particularly, Euphorbiaceae (69 compounds) and Lamiaceae (54 compounds) were the richest sources of active compounds. A better activity than the positive control was obtained with 33 compounds against the A549 cell line, 28 compounds against the MCF-7 cell line, 9 compounds against the HepG2 cell line, 8 compounds against the Hep3B cell line, 19 compounds against the SMMC-7721 cell line, 9 compounds against the HL-60 cell line, 24 compounds against the SW480 cell line, and 19 compounds against HeLa.
Collapse
|
6
|
Antiallergic Properties of Biflavonoids Isolated from the Flowers of Mesua ferrea Linn. SEPARATIONS 2022. [DOI: 10.3390/separations9050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The methanolic extract from the flowers of Mesua ferrea Linn. (Calophyllaceae) showed significant hyaluronidase inhibitory activity. Following a bioassay-guided separation of the extract, two biflavonoids, viz., mesuaferrone-A (1) and mesuaferrone-B (2), were isolated, along with ten flavonoids (3–12), two xanthones (13 and 14), three triterpenes (15–17), a phenylpropanoid (18), and five aromatics (19–24). Among the isolates, 1 and 2 (IC50 = 51.1 µM and 54.7 µM, respectively) exhibited hyaluronidase inhibitory activity equivalent to that of the commercially available antiallergic agents disodium cromoglycate (64.8 μM) and ketotifen fumarate (76.5 μM). These biflavonoids (1 and 2) are 8-8″ linked dimers that are composed of naringenin (1a) or apigenin (3), with their corresponding monomers lacking inhibitory activity (IC50 > 300 μM). In addition, 1 and 2 (IC50 = 49.4 µM and 49.2 µM, respectively) inhibited the release of β-hexosaminidase, which is a marker of antigen-IgE-mediated degranulation, in rat basophilic leukemia (RBL-2H3) cells. These inhibitory activities were more potent than those of the antiallergic agents tranilast and ketotifen fumarate (IC50 = 282 μM and 158 μM, respectively), as well as one of the corresponding monomers (1a; IC50 > 100 μM). Nonetheless, these effects were weaker than those of the other monomer (3; IC50 = 6.1 μM).
Collapse
|
7
|
Nam Hoang N, Kodama T, Nwet Win N, Prema, Minh Do K, Abe I, Morita H. A New Monoterpene from the Rhizomes of Alpinia galanga and Its Anti-Vpr Activity. Chem Biodivers 2021; 18:e2100401. [PMID: 34415099 DOI: 10.1002/cbdv.202100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
A new menthane-type monoterpene, alpigalanol (1), together with four known terpenes (2-5) were isolated from the ethyl acetate soluble fraction of the 70 % ethanol extract of the Alpinia galanga rhizomes. The structure of 1 was determined by spectroscopic analyses, including 1D- and 2D-NMR. The extract of the A. galanga rhizomes and all isolated compounds (1-5) possessed Vpr inhibitory activities against the TREx-HeLa-Vpr cells at a concentration of 1.25 μM without showing any cytotoxicity.
Collapse
Affiliation(s)
- Nhat Nam Hoang
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Nwet Nwet Win
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Prema
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan.,Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Kiep Minh Do
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
8
|
Morikawa T, Manse Y, Luo F, Fukui H, Inoue Y, Kaieda T, Ninomiya K, Muraoka O, Yoshikawa M. Indole Glycosides from Calanthe discolor with Proliferative Activity on Human Hair Follicle Dermal Papilla Cells. Chem Pharm Bull (Tokyo) 2021; 69:464-471. [PMID: 33952856 DOI: 10.1248/cpb.c21-00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A methanol extract from the underground part of Calanthe discolor Lindl. (Orchidaceae) demonstrated significant proliferative activity on human hair follicle dermal papilla cells (HFDPC, % of control: 120.8 ± 0.2%) at 100 µg/mL against HFDPC. Through bioassay-guided separation of the extract, a new indole glycoside named 6'-O-β-D-apiofuranosylindican (1) was isolated along with six known compounds (2-7) including three indole glycosides. The stereostructure of 1 was elucidated based on its spectroscopic properties and chemical characteristics. Among the isolates, 1 (110.0 ± 1.0%), glucoindican (3, 123.9 ± 6.8%), and calanthoside (4, 158.6 ± 7.1%) showed significant proliferative activity at 100 µM. Furthermore, the active indole glycosides (1, 3, and 4) upregulated the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-7 (FGF-7) mRNA and protein in HFDPC, which could be the mechanism of their proliferative activity.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University
| | - Fenglin Luo
- Pharmaceutical Research and Technology Institute, Kindai University
| | - Haruko Fukui
- Pharmaceutical Research and Technology Institute, Kindai University
| | | | | | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | | |
Collapse
|
9
|
Rattray RD, Van Wyk BE. The Botanical, Chemical and Ethnobotanical Diversity of Southern African Lamiaceae. Molecules 2021; 26:molecules26123712. [PMID: 34207006 PMCID: PMC8233991 DOI: 10.3390/molecules26123712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
The Lamiaceae is undoubtedly an important plant family, having a rich history of use that spans the globe with many species being used in folk medicine and modern industries alike. Their ability to produce aromatic volatile oils has made them valuable sources of materials in the cosmetic, culinary, and pharmaceutical industries. A thorough account of the taxonomic diversity, chemistry and ethnobotany is lacking for southern African Lamiaceae, which feature some of the region’s most notable medicinal and edible plant species. We provide a comprehensive insight into the Lamiaceae flora of southern Africa, comprising 297 species in 42 genera, 105 of which are endemic to the subcontinent. We further explore the medicinal and traditional uses, where all genera with documented uses are covered for the region. A broad review of the chemistry of southern African Lamiaceae is presented, noting that only 101 species (34%) have been investigated chemically (either their volatile oils or phytochemical characterization of secondary metabolites), thus presenting many and varied opportunities for further studies. The main aim of our study was therefore to present an up-to-date account of the botany, chemistry and traditional uses of the family in southern Africa, and to identify obvious knowledge gaps.
Collapse
|
10
|
Ent-kaurane-type diterpenoids from Isodonis Herba activate human hair follicle dermal papilla cells proliferation via the Akt/GSK-3β/β-catenin transduction pathway. J Nat Med 2021; 75:326-338. [PMID: 33417145 DOI: 10.1007/s11418-020-01477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
A methanol extract from Isodonis Herba demonstrated significant proliferative effect on human hair follicle dermal papilla cells (HFDPC, % of control: 150.0 ± 2.0% at 20 µg/mL, p < 0.01). From the extract, 14 ent-kaurane-type diterpenoids (1-14), two abietane-type diterpenoids (15 and 16) and four triterpenoids (17-20) were isolated. Among the isolates, enmein (1, 160.9 ± 3.0% at 20 µM, p < 0.01), isodocarpin (2, 169.3 ± 4.9% at 5 µM, p < 0.01), nodosin (4, 160.5 ± 12.4% at 20 µM, p < 0.01), and oridonin (8, 165.4 ± 10.6% at 10 µM, p < 0.01) showed the proliferative effects. The principal component enmein (1) activated the expression of vascular endothelial growth factor (VEGF) mRNA, upregulated the production of VEGF and increased levels of phospho-Akt, phospho-GSK-3β, and β-catenin accumulation in HFDPC, which could be the mechanism of these activate proliferation activity.
Collapse
|
11
|
Luo F, Sugita H, Muraki K, Saeki S, Chaipech S, Pongpiriyadacha Y, Muraoka O, Morikawa T. Anti-proliferative activities of coumarins from the Thai medicinal plant Mammea siamensis (Miq.) T. Anders. against human digestive tract carcinoma cell lines. Fitoterapia 2020; 148:104780. [PMID: 33246033 DOI: 10.1016/j.fitote.2020.104780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022]
Abstract
Geranylated coumarins named mammeasins G-J (1-4) were isolated from the methanol extract of the flowers of Mammea siamensis (Miq.) T. Anders. (Calophyllaceae) originating in Thailand. Their structures were established based on detailed spectroscopic analyses. The isolates, including previously reported coumarin constituents (5-28), exhibited anti-proliferative activities against human carcinoma cell lines HSC-2, HSC-4, MKN-45, and MCF-7. Mammeasin A (7, IC50 = 13.6 μM) and surangin B (15, 15.2 μM), both consisting of the geranyl group, were found to show relatively strong activities against HSC-4 cells and their mechanisms of action were found to involve apoptotic cell death.
Collapse
Affiliation(s)
- Fenglin Luo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Hidemi Sugita
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kenichi Muraki
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Shunsuke Saeki
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Saowanee Chaipech
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; Faculty of Agro-Industry, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand
| | - Yutana Pongpiriyadacha
- Faculty of Science and Technology, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| |
Collapse
|
12
|
|
13
|
Morikawa T, Luo F, Manse Y, Sugita H, Saeki S, Chaipech S, Pongpiriyadacha Y, Muraoka O, Ninomiya K. Geranylated Coumarins From Thai Medicinal Plant Mammea siamensis With Testosterone 5α-Reductase Inhibitory Activity. Front Chem 2020; 8:199. [PMID: 32266216 PMCID: PMC7099204 DOI: 10.3389/fchem.2020.00199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Geranylated coumarin constituents, kayeassamin I (1) and mammeasins E (2) and F (3) were newly isolated from the methanol extract of the flowers of Mammea siamensis (Calophyllaceae) originating in Thailand, along with five known isolates, such as mammea E/BC (23), deacetylmammea E/AA cyclo D (31), deacetylmammea E/BB cyclo D (32), mammea A/AA cyclo F (34), and mammea A/AC cyclo F (35). These compounds (1–3) were obtained as an inseparable mixture (ca. 1:1 ratio) of the 3″R and 3″S forms, respectively. Among the isolated coumarins from the extract, mammeasins E (2, 22.6 μM), A (4, 19.0 μM), and B (5, 24.0 μM), kayeassamins E (9, 33.8 μM), F (10, 15.9 μM), and G (11, 17.7 μM), surangin C (13, 5.9 μM), and mammeas A/AA (17, 19.5 μM), E/BB (22, 16.8 μM), and A/AA cyclo F (34, 23.6 μM), were found to inhibit testosterone 5α-reductase.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | - Fenglin Luo
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | - Hidemi Sugita
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | - Shunsuke Saeki
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | - Saowanee Chaipech
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan.,Faculty of Agro-Industry, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, Thailand
| | - Yutana Pongpiriyadacha
- Faculty of Science and Technology, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, Thailand
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| |
Collapse
|
14
|
Hanson JR, Nichols T, Mukhrish Y, Bagley MC. Diterpenoids of terrestrial origin. Nat Prod Rep 2019; 36:1499-1512. [DOI: 10.1039/c8np00079d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial sources from 2017.
Collapse
Affiliation(s)
- James R. Hanson
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Tyler Nichols
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Yousef Mukhrish
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Mark C. Bagley
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| |
Collapse
|
15
|
Tanabe G, Manse Y, Ogawa T, Sonoda N, Marumoto S, Ishikawa F, Ninomiya K, Chaipech S, Pongpiriyadacha Y, Muraoka O, Morikawa T. Total Synthesis of γ-Alkylidenebutenolides, Potent Melanogenesis Inhibitors from Thai Medicinal Plant Melodorum fruticosum. J Org Chem 2018; 83:8250-8264. [PMID: 29972303 DOI: 10.1021/acs.joc.8b00986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A hitherto unreported member of γ-alkylidenebutenolides in Melodorum fruticosum (Annonaceae), (4 E)-6-benzoyloxy-7-hydroxy-2,4-heptadiene-4-olide, named as isofruticosinol (4) was isolated from the methanol extract of flowers, along with the known related butenolides, namely, the (4 Z)-isomer (3) of 4, melodrinol (1), and its (4 E)-isomer (2). To unambiguously determine the absolute configuration at the C-6 position in these butenolides, the first total syntheses of both enantiomers of 2-4 were achieved over 6-7 steps from commercially available D- or L-ribose (D- and L-5). Using the same protocol, both enantiomers of 1 were also synthesized. Based on chiral HPLC analysis of all synthetic compounds ( S- and R-1-4), all naturally occurring butenolides were assigned as partial racemic mixtures with respect to the chiral center at C-6 (enantiomeric ratio, 6 S/6 R = ∼83/17). Furthermore, the melanogenesis inhibitory activities of S- and R-1-4 were evaluated, with all shown to be potent inhibitors with IC50 values in the range 0.29-2.9 μM, regardless of differences in the stereochemistry at C-6. In particular, S-4 (IC50 = 0.29 μM) and R-4 (0.39 μM) showed potent inhibitory activities compared with that of reference standard arbutin (174 μM).
Collapse
|
16
|
Antimycobacterial Activity and Safety Profile Assessment of Alpinia galanga and Tinospora cordifolia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2934583. [PMID: 30069222 PMCID: PMC6057328 DOI: 10.1155/2018/2934583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) remains a common deadly infectious disease and worldwide a major health problem. The current study was therefore designed to investigate the in vitro antimycobacterial activity of different extracts of Alpinia galanga and Tinospora cordifolia. Moreover, a safety assessment for both plants was carried out. Dichloromethane and ethanolic extracts of each plant were examined against H37Rv INH-sensitive and resistant INH strains of Mycobacterium tuberculosis. The safety assessment of both plants has been performed through in vivo acute and chronic toxicity studies in animal model. Body weight, food consumption, water intake, organ's weight, and haematological and biochemical parameters of blood and serum were evaluated. The extracts of A. galanga and T. cordifolia produced significant and dose-dependent inhibitory activity with maximum effect of 18-32% at 50 μg/ml against both strains of M. tuberculosis. No effect on the body weight or food and water consumption was observed but A. galanga caused significantly an increase in the relative weight of the heart, liver, spleen, and kidney. Haematological studies of both plants revealed a slight but significant fall in the RBC and WBC level as well as haemoglobin and platelets. In addition, A. galanga extracts increased significantly liver enzymes and bilirubin and glucose.
Collapse
|
17
|
Taira N, Katsuyama Y, Yoshioka M, Muraoka O, Morikawa T. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity. Int J Mol Sci 2018; 19:ijms19041144. [PMID: 29642633 PMCID: PMC5979531 DOI: 10.3390/ijms19041144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C–alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives (1–28) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure–function relationships. Although not the most potent inhibitors, 3-O-(2,3-dihydroxypropyl)-2-O-hexyl-l-ascorbic acid (6, IC50 = 81.4 µM) and 2-O-(2,3-dihydroxypropyl)-3-O-hexyl-l-ascorbic acid (20, IC50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3-O-alkyl-derivatives (2–14) exhibit stronger inhibitory activity than the corresponding 2-O-alkyl-derivatives (16–28); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.
Collapse
Affiliation(s)
- Norihisa Taira
- SEIWA KASEI CO, LTD., 1-2-14, Nunoichicho, Higashi-osaka, Osaka 579-8004, Japan.
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Yushi Katsuyama
- SEIWA KASEI CO, LTD., 1-2-14, Nunoichicho, Higashi-osaka, Osaka 579-8004, Japan.
| | - Masato Yoshioka
- SEIWA KASEI CO, LTD., 1-2-14, Nunoichicho, Higashi-osaka, Osaka 579-8004, Japan.
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| |
Collapse
|