1
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
2
|
Abdelwahab SI, Taha MME, Jerah AA, Farasani A, Abdullah SM, Aljahdali IA, Oraibi O, Oraibi B, Alfaifi HA, Alzahrani AH, Babiker YOH. Insights into frankincense and myrrh research: A comprehensive analytical study of patterns and perspectives. Heliyon 2024; 10:e38102. [PMID: 39416835 PMCID: PMC11481677 DOI: 10.1016/j.heliyon.2024.e38102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Frankincense (Boswellia) and Myrrh (Commiphora) are natural substances that have a long history of traditional use and potential therapeutic applications. This study aimed to provide comprehensive insights into the literature on Frankincense and Myrrh research (FMR) by examining patterns, perspectives, and research trends within the research landscape. Methods This bibliometric study utilized MeSH-generated terms, followed the PRISMA guidelines, and analyzed English-based bibliographic data from original studies retrieved from the Scopus database. The VOSviewer and Bibliometrix applications were employed to analyze the CVS and BibTex data consisting of 955 records. This study focuses on publication trends, research topics, citation counts, research impacts, and collaboration dynamics. Results The analysis revealed a steady increase in FMR, indicating growing interest in these substances. Egypt, the United States, and Saudi Arabia are the most prolific countries in terms of research output. FMR primarily focuses on chemical composition, pharmacological properties, and medicinal applications. Key research topics include identification and analysis of bioactive compounds, optimization of extraction techniques, and evaluation of their therapeutic potential. Surprisingly, the thematic map was overwhelmed by the niche, motor, basic, and emerging themes. Trending topics in FMR include "Myrrh oil", "sesquiterpene", "tapping", "triterpenoids", and "allergic contact dermatitis". Collaboration networks highlight the involvement of diverse stakeholders, indicating the importance of multidisciplinary and international collaboration in advancing the field. Conclusions These insights contribute to a better understanding of the research landscape of FMR, guiding future studies and facilitating the utilization of these natural substances for the benefit of society.
Collapse
Affiliation(s)
| | | | - Ahmed Ali Jerah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdullah Farasani
- Health Sciences Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saleh Mohammad Abdullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ieman A. Aljahdali
- Department of Clinical laboratory sciences, Taif University, Taif, Saudi Arabia
| | - Omar Oraibi
- Department of Internal Medicine, Faculty of Medicine, Jazan, Jazan University, Saudi Arabia
| | - Bassem Oraibi
- Health Sciences Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hassan Ahmad Alfaifi
- Pharmaceutical Care Administration (Jeddah Second Health Cluster), Ministry of Health, Jeddah, Saudi Arabia
| | - Amal Hamdan Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
3
|
Rainatou B, Esther BKWLM, Boukaré K, Souleymane C, Moumouni K, Noufou O. Phytochemical Study and In Vitro Biological Activities of Hibiscus panduriformis Burm. f. (Malvaceae), Alternanthera pungens Kunth (Amaranthaceae), and Wissadula rostrata (Schumach.) Hook. f. (Malvaceae). BIOMED RESEARCH INTERNATIONAL 2023; 2023:8289750. [PMID: 38162338 PMCID: PMC10756742 DOI: 10.1155/2023/8289750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/24/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
The present study investigated the phytochemical content of Hibiscus panduriformis, Alternanthera pungens, and Wissadula rostrata and assessed their radical scavenging and anti-inflammatory properties. n-Hexane, dichloromethane (DCM), ethyl acetate, and methanol extracts were prepared from the powdered plant parts. The phytochemical analysis was performed using qualitative high-performance thin-layer chromatography, and polyphenols were quantified using well-established methods. The anti-inflammatory effect was by lipoxygenase inhibition, while the antiradical impact was evaluated through DPPH and ABTS radicals. Steroids, triterpenoids, flavonoids, and tannins were identified in the three plants. The highest phenolic content (95.67 ± 2.19 mg gallic acid equivalent/g) was obtained in the methanolic extract of W. rostrata, while the lowest was measured in H. panduriformis. H. panduriformis was found to be highly rich in flavonoids (61.22 ± 0.09 mg rutin equivalent/g), condensed tannins (62.53 ± 0.03 mg catechin equivalent/g), and hydrolyzable tannins (125.1 ± 1.02 mg tannic acid equivalent/g). The methanolic extract of H. panduriformis displayed the greatest antilipoxygenase activity with an IC50 value of 8.78 ± 1.05 μg/mL. It should be noted that although a moderate to low effect was observed, the extracts were more likely to scavenge DPPH (IC50 values ranged from 0.106 ± 0.010 to 1 mg/mL) than ABTS radicals. There was a strong to moderate correlation between the antilipoxygenase and DPPH radical scavenging effects of the methanolic extracts and total phenolic content (antilipoxygenase, r = 0.7175; DPPH, r = 0.9376). Furthermore, it is worth noting that this is the first report investigating the phytochemical analysis and in vitro biological properties of Hibiscus panduriformis. The results highlighted the richness of this plant in polyphenols and demonstrated its high and moderate effects on lipoxygenase and DPPH radicals, respectively. To this intent, further in vivo and in vitro studies on this plant, along with exhaustive phytochemical analysis, are needed.
Collapse
Affiliation(s)
- Boly Rainatou
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| | | | - Kaboré Boukaré
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
- Laboratory of Organic Chemistry and Applied Physic (LCOPA), Doctoral School of Sciences and Techniques, University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Compaoré Souleymane
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Koala Moumouni
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Ouédraogo Noufou
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| |
Collapse
|
4
|
Jones MA, Borun A, Greensmith DJ. Boswellia carterii oleoresin extracts induce caspase-mediated apoptosis and G 1 cell cycle arrest in human leukaemia subtypes. Front Pharmacol 2023; 14:1282239. [PMID: 38155908 PMCID: PMC10752984 DOI: 10.3389/fphar.2023.1282239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background: Leukemias are a common cancer in adults and children. While existing treatments are effective, they are associated with severe side-effects compounded by the emergence of drug resistance. This necessitates the need to develop new drugs and phytopharmaceuticals offer a largely untapped source. Oleoresins produced by plants in the genus Boswellia have been used for centuries in traditional medicine and recent work suggests they may exhibit anti-cancer activity. However, the underlying mechanisms remain unclear and most existing research focusses on Boswellia serrata; just one of many species in the Boswellia genus. To address these limitations, we elucidated the anti-cancer potential and associated mechanisms of action of Boswellia carterii. Methods: A methanolic solvent extraction method was optimised. The effect of methanolic extracts of B. carterii on leukaemia (K562, MOLT-4 and CCRF-CEM) and normal (PBMC) cell line viability was assessed using MTT assay and flow cytometry. Cell morphology, apoptosis (Annexin-V/propidium iodide), mitochondrial membrane potential (Rhodamine-123) and the cell cycle (propidium iodide) were evaluated using flow cytometry. Regulatory protein expression was quantified using Western Blot. Results: Methanolic extracts of B. carterii oleoresin reduced the viability of K562, MOLT-4 and CCRF-CEM cell lines with selectivity indexes of between 1.75 and 2.68. Extracts increased the proportion of cells in late apoptosis by 285.4% ± 51.6%. Mitochondrial membrane potential was decreased by 41% ± 2% and the expression of cleaved caspase-3, -7, and -9 was increased by 5.7, 3.3, and 1.5-fold respectively. Extracts increased the proportion of cells in subG1 and G1 phase by 867.8% ± 122.9% and 14.0 ± 5.5 and decreased those in S phase and G2/M by 63.4% ± 2.0% and 57.6% ± 5.3%. Expression of CDK2, CDK6, cyclin D1, and cyclin D3 were decreased by 2.8, 4.9, 3.9, and 2.5-fold. Conclusion: We are the first to report that methanolic extracts of B. carterii are selectively cytotoxic against three leukemia cell lines. Cytotoxic mechanisms likely include activation of the intrinsic apoptotic pathway and cell cycle arrest through downregulation of CDK2, CDK6, cyclin D1, and cyclin D3. Our findings suggest that B. carterii may be an important source of novel chemotherapeutic drugs and justifies further investigation.
Collapse
Affiliation(s)
| | | | - David James Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
5
|
Mukadam S, Ghule C, Girme A, Shinde VM, Hingorani L, Mahadik KR. A Simple HPTLC Approach of Quantification of Serratol and Tirucallic Acid with Boswellic Acids in Boswellia serrata by Validated Densitometric Method with MS/MS Characterization. J Chromatogr Sci 2023; 61:953-962. [PMID: 36892162 DOI: 10.1093/chromsci/bmad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 01/16/2023] [Indexed: 03/10/2023]
Abstract
This study was planned to develop a simple high-performance thin-layer chromatography method for qualitative and quantitative estimation of 3-acetyl-11-keto-β-boswellic acid (AKBBA), β-boswellic acid (BBA), 3-oxo-tirucallic acid (TCA) and serratol (SRT) with HPTLC-ESI-MS/MS for characterization in Boswellia serrata Roxb. oleo gum resin extract. The method was developed with hexane-ethyl acetate-toluene-chloroform-formic acid as mobile phase. RF values observed for AKBBA, BBA, TCA and SRT were 0.42, 0.39, 0.53 and 0.72, respectively. The method was validated according to International Council for Harmonisation guidelines. The concentration range for linearity was 100-500 ng/band for AKBBA and 200-700 ng/band for the other three markers with r2 > 0.99. The method resulted in good recoveries as 101.56, 100.68, 98.64 and 103.26%. The limit of detection was noticed as 25 , 37, 54 and 38 ng/band, with a limit of quantification as 76, 114, 116 and 115 ng/band, for AKBBA, BBA, TCA and SRT, respectively. The four markers were identified and confirmed in B. serrata extract using TLC-MS by indirect profiling by LC-ESI-MS/MS and were identified as terpenoids, TCA and cembranoids: AKBBA (mass/charge (m/z) = 513.00), BBA (m/z = 455.40), 3-oxo-tirucallic acid (m/z = 455.70) and SRT (m/z = 291.25), respectively.
Collapse
Affiliation(s)
- Smruti Mukadam
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Chetana Ghule
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Vaibhav M Shinde
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Kakasaheb R Mahadik
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| |
Collapse
|
6
|
Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, Setzer WN, Faizal Abdull Razis A, Modu B, Butnariu M, Sharifi-Rad J. Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol 2023; 14:1187181. [PMID: 37601048 PMCID: PMC10434769 DOI: 10.3389/fphar.2023.1187181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of highly effective plant-based medications with few or no side effects, the use of phytomedicines against complex diseases such as cancer is becoming more widespread. The broadly recognized pentacyclic triterpenes known as boswellic acids (BAs) are derived from the oleogum resin, or frankincense, extracted from the plant species of the genus Boswellia. The frankincense mixture contains various BA types, each having a different potential and helping treat certain cancers. This review focuses on details regarding the traits of the BAs, their roles as anti-cancer agents, the mechanism underlying their activities, and the function of their semi-synthetic derivatives in managing and treating certain cancers. The review also explores the biological sources of BAs, how they are conserved, and how biotechnology might help preserve and improve in vitro BA production. The review concludes that the BAs and their semi-synthetic derivatives are effective against a broad spectrum of cancer cell lines. The detailed information in the review can be helpful for researchers to gain more information about BAs and BA-based medications for efficient and cost-effective cancer treatments.
Collapse
Affiliation(s)
- Vijay Laxmi Trivedi
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Ruchi Soni
- Regional Centre for Organic and Natural Farming, Ghaziabad, Uttar Pradesh, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni Sureda
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, Palma de Mallorca, Spain
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” From Timisoara, Timis, Romania
| | | |
Collapse
|
7
|
Khayat MT, Mohammad KA, Mohamed GA, Safo MK, Ibrahim SRM. Integracides: Tetracyclic Triterpenoids from Fusarium sp.-Their 5-Lipoxygenase Inhibitory Potential and Structure-Activity Relation Using In Vitro and Molecular Docking Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122095. [PMID: 36556460 PMCID: PMC9782297 DOI: 10.3390/life12122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Inflammation is a complicated disorder that is produced as a result of consecutive processes. 5-LOX (5-lipoxygenase) is accountable for various inflammation mediators and leukotrienes synthesis, and its inhibition is the target of anti-inflammation therapeutics. Fungi have acquired enormous attentiveness because of their capability to biosynthesize novel bio-metabolites that reveal diversified bio-activities. A new tetracyclic triterpenoid, integracide L (1), along with integracides B (2) and F (3), were separated from Mentha longifolia-associated Fusarium sp. (FS No. MAR2014). Their structures were verified utilizing varied spectral analyses. The isolated metabolites (1-3), alongside the earlier reported integracides G (4), H (5), and J (6), were inspected for 5-LOX inhibition capacity. Interestingly, 1-6 possessed marked 5-LOX inhibition potentials with IC50s ranging from 1.18 to 3.97 μM compared to zileuton (IC50 1.17 µM). Additionally, molecular docking was executed to examine the interaction among these metabolites and 5-LOX, as well as to validate the in vitro findings. The docking study revealed their inhibitory activity interactions in the binding pocket. These findings highlighted the potential of integracides as lead metabolites for anti-inflammation drug discovery.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-555543053
| | - Khadijah A. Mohammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
8
|
ŞEN A. Complementary medicines used in ulcerative colitis and unintended interactions with cytochrome P450-dependent drug-metabolizing enzymes. Turk J Med Sci 2022; 52:1425-1447. [PMID: 36422483 PMCID: PMC10395683 DOI: 10.55730/1300-0144.5482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/19/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022] Open
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disease with multiple genetic and a variety of environmental risk factors. Although current drugs significantly aid in controlling the disease, many people have led to the application of complementary therapies due to the common belief that they are natural and safe, as well as due to the consideration of the side effect of current drugs. Curcumin, cannabinoids, wheatgrass, Boswellia, wormwood and Aloe vera are among the most commonly used complementary medicines in UC. However, these treatments may have adverse and toxic effects due to unintended interactions with drugs or drug-metabolizing enzymes such as cytochrome P450s; thus, being ignorant of these interactions might cause deleterious effects with severe consequences. In addition, the lack of complete and controlled long-term studies with the use of these complementary medicines regarding drug metabolism pose additional risk and unsafety. Thus, this review aims to give an overview of the potential interactions of drug-metabolizing enzymes with the complementary botanical medicines used in UC, drawing attention to possible adverse effects.
Collapse
Affiliation(s)
- Alaattin ŞEN
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gül University, Kayseri,
Turkey
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli,
Turkey
| |
Collapse
|
9
|
Abdel-Tawab M. Considerations to Be Taken When Carrying Out Medicinal Plant Research-What We Learn from an Insight into the IC 50 Values, Bioavailability and Clinical Efficacy of Exemplary Anti-Inflammatory Herbal Components. Pharmaceuticals (Basel) 2021; 14:437. [PMID: 34066427 PMCID: PMC8148151 DOI: 10.3390/ph14050437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal plants represent a big reservoir for discovering new drugs against all kinds of diseases including inflammation. In spite the large number of promising anti-inflammatory plant extracts and isolated components, research on medicinal plants proves to be very difficult. Based on that background this review aims to provide a summarized insight into the hitherto known pharmacologically active concentrations, bioavailability, and clinical efficacy of boswellic acids, curcumin, quercetin and resveratrol. These examples have in common that the achieved plasma concentrations were found to be often far below the determined IC50 values in vitro. On the other hand demonstrated therapeutic effects suggest a necessity of rethinking our pharmacokinetic understanding. In this light this review discusses the value of plasma levels as pharmacokinetic surrogates in comparison to the more informative value of tissue concentrations. Furthermore the need for new methodological approaches is addressed like the application of combinatorial approaches for identifying and pharmacokinetic investigations of active multi-components. Also the physiological relevance of exemplary in vitro assays and absorption studies in cell-line based models is discussed. All these topics should be ideally considered to avoid inaccurate predictions for the efficacy of herbal components in vivo and to unlock the "black box" of herbal mixtures.
Collapse
Affiliation(s)
- Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, 65760 Eschborn, Germany; ; Tel.: +49-6196-937-955
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Mariaule V, Kriaa A, Soussou S, Rhimi S, Boudaya H, Hernandez J, Maguin E, Lesner A, Rhimi M. Digestive Inflammation: Role of Proteolytic Dysregulation. Int J Mol Sci 2021; 22:ijms22062817. [PMID: 33802197 PMCID: PMC7999743 DOI: 10.3390/ijms22062817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of the proteolytic balance is often associated with diseases. Serine proteases and matrix metalloproteases are involved in a multitude of biological processes and notably in the inflammatory response. Within the framework of digestive inflammation, several studies have stressed the role of serine proteases and matrix metalloproteases (MMPs) as key actors in its pathogenesis and pointed to the unbalance between these proteases and their respective inhibitors. Substantial efforts have been made in developing new inhibitors, some of which have reached clinical trial phases, notwithstanding that unwanted side effects remain a major issue. However, studies on the proteolytic imbalance and inhibitors conception are directed toward host serine/MMPs proteases revealing a hitherto overlooked factor, the potential contribution of their bacterial counterpart. In this review, we highlight the role of proteolytic imbalance in human digestive inflammation focusing on serine proteases and MMPs and their respective inhibitors considering both host and bacterial origin.
Collapse
Affiliation(s)
- Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Souha Soussou
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Houda Boudaya
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
- Correspondence:
| |
Collapse
|
11
|
Brendler T, Al‐Harrasi A, Bauer R, Gafner S, Hardy ML, Heinrich M, Hosseinzadeh H, Izzo AA, Michaelis M, Nassiri‐Asl M, Panossian A, Wasser SP, Williamson EM. Botanical drugs and supplements affecting the immune response in the time of
COVID
‐19: Implications for research and clinical practice. Phytother Res 2020; 35:3013-3031. [DOI: 10.1002/ptr.7008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas Brendler
- Department of Botany and Plant Biotechnology University of Johannesburg Johannesburg South Africa
- Plantaphile Collingswood New Jersey USA
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research Centre University of Nizwa Nizwa Oman
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy University of Graz Graz Austria
| | | | - Mary L. Hardy
- Association of Integrative and Holistic Medicine San Diego California USA
| | - Michael Heinrich
- Research Group ‘Pharmacognosy and Phytotherapy’, UCL School of Pharmacy University of London London UK
- Graduate Institute of Integrated Medicine, College of Chinese Medicine China Medical University Taichung Taiwan
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Angelo A. Izzo
- Department of Pharmacy, School of Medicine University of Naples Federico II Naples Italy
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences University of Kent Canterbury UK
| | - Marjan Nassiri‐Asl
- Department of Pharmacology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Neurobiology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Solomon P. Wasser
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa Israel
| | | |
Collapse
|
12
|
|
13
|
Haghaei H, Soltani S, Aref Hosseini S, Rashidi MR, Karima S. Boswellic Acids as Promising Leads in Drug Development against Alzheimer’s Disease. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biological activity of Boswellia extract (BE) has been attributed to its main active ingredients; i.e. Boswellic acids (BAs). BE/BAs possess a promising therapeutic potential in neurodegenerative disorders; including Alzheimer's disease (AD). The multifactorial nature of AD pathophysiology necessitates the development of the disease-modifying agents (DMA). Recent multi-targeting approaches for the DMAs development have brought more attention to the plant-derived compounds regarding their better human compatibility because of their biologic origin. This review addresses the current knowledge on the anti-AD activity of BE/BAs based on the available in silico, in vitro, in vivo studies and clinical trials. The contribution of BE/BAs in inflammatory pathways, Tau and β-amyloid proteins, microtubule functions, oxidative stress, cholinesterase and diabetes/insulin pathways involved in AD have been discussed. BAs efficacy in different AD-related pathways has been confirmed in vitro and in vivo. They can be considered as valuable scaffold/lead compounds for multi-targeted DMAs in anti-AD drug discovery and development.
Collapse
Affiliation(s)
- Hossein Haghaei
- Nutrition and food Sciences Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Rashidi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|