1
|
Ahmed HB, Emam HE, Shaheen TI. Fluorescent antimicrobial hydrogel based on fluorophore N-doped carbon dots originated from cellulose nanocrystals. Sci Rep 2024; 14:29226. [PMID: 39587165 PMCID: PMC11589154 DOI: 10.1038/s41598-024-80222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
The current study represents a unique fabrication strategy for preparation of fluorescent hydrogels via incorporation of fluorescent quantum dots (QDs) as fluorophore entities into chitosan as a gelling matrix. QDs identified as carbon quantum dots (CQDs) & nitrogen containing carbon quantum dots (NCQDs) were preliminary synthesized from cellulose nanocrystals (CNCs) and cationic cellulose nanocrystals (CCNCs), respectively. Cationic CNCs was prepared via chemical grafting with poly-di-allyl dimethyl ammonium chloride (CNCs-g-poly-DADMAC) through free chain polymerization reaction. Additionally, both of the prepared CQDs & NCQDs were impregnated in 3D interpenetrating network of chitosan for preparation of microbicide/florescent hydrogels (CQDs@Chs hydrogel & NCQDs@Chs hydrogel). The represented data revealed that, exploitation of cationic CNCs resulted in preparation of NCQDs with more controllable size and superior photoluminescence. Moreover, the increment in concentration of CNCs reflected in nucleation of enlarged QDs, at variance of CCNCs, whereas, increment of concentration resulted in significantly smaller-sized QDs. Size distribution of CQDs ingrained from 2% CNCs was estimated to be 8.2 nm, while, NCQDs ingrained from 2% CCNCs exhibited with size distribution of 3.8 nm. The prepared florescent CQDs@Chs hydrogel & NCQDs@Chs hydrogel showed excellent antimicrobial performance and the diameter of inhibition zone was estimated to be 31 mm, 26 mm & 22 mm against E. Coli, S. Aureus & C. Albicans with CQDs@Chs, respectively. Whereas, treatment of the as-mentioned microbial strains with NCQDs@Chs resulted in detection of inhibition zone diameter to be significantly higher as 34 mm, 28 mm & 25 mm for E. Coli, S. Aureus & C. Albicans, respectively. In a conclusion, cationic CNCs showed seniority in nucleation of QDs with significantly higher photoluminescence and microbicide activities.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Tharwat I Shaheen
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Ferronato GDA, Vit FF, da Silveira JC. 3D culture applied to reproduction in females: possibilities and perspectives. Anim Reprod 2024; 21:e20230039. [PMID: 38510565 PMCID: PMC10954237 DOI: 10.1590/1984-3143-ar2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024] Open
Abstract
In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.
Collapse
Affiliation(s)
| | - Franciele Flores Vit
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | |
Collapse
|
3
|
Injectable PTHF-based thermogelling polyurethane implants for long-term intraocular application. Biomater Res 2022; 26:70. [PMID: 36461130 PMCID: PMC9716749 DOI: 10.1186/s40824-022-00316-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/06/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hydrogels show great potential to be used for intraocular applications due to their high-water content and similarity to the native vitreous. Injectable thermosensitive hydrogels through a small-bore needle can be used as a delivery system for drugs or a tamponading substitute to treat posterior eye diseases with clear clinical potential. However, none of the currently available thermosensitive hydrogels can provide intraocular support for up to 3 months or more. METHOD In this study, an injectable polytetrahydrofuran (PTHF)-based thermosensitive hydrogel was synthesized by polyurethane reaction. We examined the injectability, rheological properties, microstructure, cytotoxicity, and in vivo compatibility and stability of the hydrogels in rabbit eyes. RESULTS We found that the PTHF block type and PTHF component ratio could modulate thermogelation properties of the polyurethane polymers. The PTHF-based hydrogel implants retained normal retinal structure and function. Incorporating bioinert PTHF generated highly biocompatible and more stable thermogels in the vitreous cavity, with gel networks and the presence of polymer still observed after 3 months when other thermogels would have been completely cleared. Moreover, despite lacking hydrolytically cleavable linkages, the polymers could be most naturally removed from the native vitreous by bio-erosion without additional surgical interventions. CONCLUSION Our findings suggest the potential of incorporating hydrophobic bioinert blocks to enhance the in vivo stability of supramolecularly associated hydrogels for long-term intraocular applications.
Collapse
|
4
|
Ow V, Loh XJ. Recent developments of temperature‐responsive polymers for ophthalmic applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
5
|
Silva VLM, Pinto DCGA, Santos CMM, Rocha DHA. 15.4.5 Quinolinones and Related Systems (Update 2022). KNOWLEDGE UPDATES 2022/3 2022. [DOI: 10.1055/sos-sd-115-01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractQuinolinones, of which the quinolin-4(1H)-one ring system can be highlighted, represent an exciting class of nitrogen heterocycles. The quinolinone motif can be found in many natural compounds and approved drugs for several diseases. This chapter is a comprehensive survey of the methods for the synthesis of quinolin-2(1H)-ones, quinolin-4(1H)-ones, and their thio- and amino derivatives, and is an update to the previous Science of Synthesis chapter (Section 15.4), covering the period between 2003 and 2020.
Collapse
|
6
|
Xue K, Liu Z, Lin Q, Lim JYC, Tang KY, Wong SL, Parikh BH, Su X, Loh XJ. PCL-Based Thermogelling Polymer: Molecular Weight Effects on Its Suitability as Vitreous Tamponade. ACS APPLIED BIO MATERIALS 2020; 3:9043-9053. [DOI: 10.1021/acsabm.0c01266] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Zengping Liu
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228 Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, 138673 Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Soo Lin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228 Singapore
| | - Bhav Harshad Parikh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228 Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, 138673 Singapore
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228 Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, 138673 Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, 168751 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, 168751 Singapore
| |
Collapse
|
7
|
Martelli C, King A, Simon T, Giamas G. Graphene-Induced Transdifferentiation of Cancer Stem Cells as a Therapeutic Strategy against Glioblastoma. ACS Biomater Sci Eng 2020; 6:3258-3269. [PMID: 33463176 DOI: 10.1021/acsbiomaterials.0c00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is an extremely malignant tumor of the central nervous system, characterized by low response to treatments and reoccurrence. This therapeutic resistance is believed to arise mostly from the presence of a subpopulation of tumorigenic stem cells, known as cancer stem cells (CSCs). In addition, the surrounding microenvironment is known to maintain CSCs, thus supporting tumor development and aggressiveness. This review focuses on a therapeutic strategy involving the stem cell trans-differentiating ability of graphene and its derivatives. Graphene distinguishes itself from other carbon-based nanomaterials due to an array of properties that makes it suitable for many purposes, from bioengineering to biomedical applications. Studies have shown that graphene is able to promote and direct the differentiation of CSCs. In addition, potential usage of graphene in GBM treatment represents a challenge in respect to its administration method. The present review also provides a general outlook of the potential side effects (e.g., cell toxicity) that graphene could have. Overall, this report discusses certain graphene-based therapeutic strategies targeting CSCs, which can be considered as prospective effective GBM treatments.
Collapse
Affiliation(s)
- Costanza Martelli
- University College London, Queen Square Institute of Neurology, London WC1N 3BG, U.K
| | - Alice King
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QG, U.K
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K
| |
Collapse
|
8
|
Luo Z, Xue K, Zhang X, Lim JYC, Lai X, Young DJ, Zhang ZX, Wu YL, Loh XJ. Thermogelling chitosan-based polymers for the treatment of oral mucosa ulcers. Biomater Sci 2020; 8:1364-1379. [PMID: 31916556 DOI: 10.1039/c9bm01754b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Current treatments for oral mucosa-related ulcers use drugs to relieve pain and promote healing, but rarely consider drug resistance to bacterial infection in the microenvironment of the oral cavity or the prevention of bleeding from gingival mucosa ulcers. We herein report an injectable, thermogelling chitosan-based system to address these concerns. An aqueous solution of chitosan-based conjugates (chitosan-g-poly(N-isopropylacrylamide) [CS-g-PNIPAAM] including 1a [CS-g-PNIPAAM with less PNIPAAM] and 1b [CS-g-PNIPAAM with more PNIPAAM], and chitosan-g-poly(N-isopropylacrylamide)-g-polyacrylamide [CS-g-PNIPAAM-g-PAM] 3) could reversibly form semi-solid gels at physiological temperatures for easy application to oral cavity ulcer sites by injection. The chitosan-based conjugate thermogels prepared could inhibit both Gram-positive and Gram-negative bacteria and the two with higher chitosan and poly(N-isopropylacrylamide) contents (1a and 1b) promoted proliferation of gingival fibroblasts in vitro. These two thermogels also exhibited improved blood clotting in an in vivo rat study. Thermogels 1a and 1b effectively promoted ulcer healing and shortened ulcer healing times in an oral gingival mucosa ulcer model using Sprague Dawley (SD) rats. These thermogels showed no obvious toxicity to the main organs of SD rats undergoing gingival ulcer treatment. These results suggest that this antibacterial biomaterial could be a promising injectable therapeutic agent for the treatment for oral mucosa ulcers.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Guan S, Zhang K, Li J. Recent Advances in Extracellular Matrix for Engineering Stem Cell Responses. Curr Med Chem 2019; 26:6321-6338. [DOI: 10.2174/0929867326666190704121309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation is an advanced medical technology, which brings hope for the
treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential
ability, stem cell research has been pushed to the forefront of regenerative medicine and has become
a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions
and important biological significance in regulating the life activities of cells, which may play crucial
roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the
stem cells and their engineering application, and highlight the control of the fate of stem cells, we
offer our perspectives on the various challenges and opportunities facing the use of the components
of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
10
|
Xue K, Zhao X, Zhang Z, Qiu B, Tan QSW, Ong KH, Liu Z, Parikh BH, Barathi VA, Yu W, Wang X, Lingam G, Hunziker W, Su X, Loh XJ. Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomater Sci 2019; 7:4603-4614. [DOI: 10.1039/c9bm01049a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyurethane thermogels show sustained delivery of bioactive anti-VEGFs therapeutics to the eye.
Collapse
|