1
|
Deng J, Hou M, Cui S, Liu Y, Li X, Liu L. Integrative analysis of transcriptome and metabolome reveals molecular mechanisms of dynamic change of storage substances during dehydration and drying process in peanuts ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2025; 16:1567059. [PMID: 40308305 PMCID: PMC12042706 DOI: 10.3389/fpls.2025.1567059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025]
Abstract
Various substances in seeds occurred many transformations during the drying process, which is key to long-term storage, but the mechanism is unclear. In this study, seeds of the peanut (Arachis hypogaea L.) variety "Silihong" were selected as the experimental materials. Transcriptome and metabolome analyses of the peanut kernels at day 0 (S0d), day 1 (S1d), day 3 (S3d), day 5 (S5d), and day 7 (S7d) of drying were performed to search for the genes that controlled the storage compounds. A total of 165 differentially expressed metabolites (DAMs) and 15,010 differentially expressed genes (DEGs) in the five stages of seed drying were identified. S3d was the key period during which the content of most of the metabolites changed significantly. The contents of most amino acids(87%) and their derivatives decreased significantly, and most of the lipids(68%), sugars(67%) and flavonoids(87%) accumulated to their peak at S3d. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were primarily enriched in four aspects, including amino acid biosynthesis and metabolism, lipid biosynthesis and metabolism, sucrose and starch metabolism, and flavonoid biosynthesis. Crucial genes that potentially regulate the storage substances were identified, including PAL, FAD2, SUS, LOX, and PFK. Overall, this study provides valuable insights into the molecular regulation of storage compounds in peanut seeds and may help to assess edible peanuts that have enhanced nutritional and economic values.
Collapse
Affiliation(s)
| | | | | | | | | | - Lifeng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Wang Y, Yu J, Gao Y, Li Z, Kim DS, Chen M, Fan Y, Zhang H, Yan X, Zhang CJ. Agronomic evaluation of shade tolerance of 16 spring Camelina sativa (L.) Crantz genotypes under different artificial shade levels using a modified membership function. FRONTIERS IN PLANT SCIENCE 2022; 13:978932. [PMID: 36105697 PMCID: PMC9465330 DOI: 10.3389/fpls.2022.978932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Camelina [Camelina sativa (L.) Crantz] is currently gaining considerable attention as a potential oilseed feedstock for biofuel, oil and feed source, and bioproducts. Studies have shown the potential of using camelina in an intercropping system. However, there are no camelina genotypes evaluated or bred for shade tolerance. The objective of this study was to evaluate and determine the shade tolerance of sixteen spring camelina genotypes (growth stage: BBCH 103; the plants with 4-5 leaves) for intercropping systems. In this study, we simulated three different shade levels, including low (LST), medium (MST), and high shade treatments (HST; 15, 25, and 50% reduction of natural light intensity, respectively), and evaluated the photosynthetic and physiological parameters, seed production, and seed quality. The mean chlorophyll pigments, including the total chlorophyll and chlorophyll a and b across the 16 genotypes increased as shade level increased, while the chlorophyll fluorescence parameter Fv/Fm, chlorophyll a/b, leaf area, the number of silicles and branches plant-1 decreased as shade level increased. The first day of anthesis and days of flowering duration of camelina treated with shade were significantly delayed and shortened, respectively, as shade increased. The shortened lifecycle and altered flowering phenology decreased camelina seed yield. Additionally, the shade under MST and HST reduced the seed oil content and unsaturated fatty acids, but not saturated fatty acids. The dendrograms constructed using the comprehensive tolerance membership values revealed that CamK9, CamC4, and 'SO-40' were the relatively shade-tolerant genotypes among the 16 camelina genotypes. These camelina genotypes can grow under the shade level up to a 25% reduction in natural light intensity producing a similar seed yield and seed oil quality, indicating the potential to intercrop with maize or other small grain crops. The present study provided the baseline information on the response of camelina genotypes to different shade levels, which would help in selecting or breeding shade-tolerant genotypes.
Collapse
Affiliation(s)
- Yawen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jialin Yu
- Peking University Institute of Advanced Agricultural Science, Weifang, Shandong, China
| | - Yang Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Do-Soon Kim
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Min Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yi Fan
- Henan Napu Biotechnology Co., Ltd., Zhengzhou, Henan Province, China
| | - Haixi Zhang
- Research Center for Camelina sativa Planting and Engineering Technology, Anyang, Henan Province, China
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chuan-Jie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Chen Q, Zhang X, Fang Y, Wang B, Xu S, Zhao K, Zhang J, Fang J. Genome-Wide Identification and Expression Analysis of the R2R3-MYB Transcription Factor Family Revealed Their Potential Roles in the Flowering Process in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 13:820439. [PMID: 35401601 PMCID: PMC8990856 DOI: 10.3389/fpls.2022.820439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 05/10/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a productive fruit crop with high nutritional and medical value in tropical and subtropical regions. The MYB gene family is one of the most widespread plant transcription factor (TF) families participating in the flowering regulation. However, little is known about the MYB TFs involved in the flowering process in longan and its regulatory network. In this study, a total of 119 DlR2R3-MYB genes were identified in the longan genome and were phylogenetically grouped into 28 subgroups. The groupings were supported by highly conserved gene structures and motif composition of DlR2R3-MYB genes in each subgroup. Collinearity analysis demonstrated that segmental replications played a more crucial role in the expansion of the DlR2R3-MYB gene family compared to tandem duplications, and all tandem/segmental duplication gene pairs have evolved under purifying selection. Interspecies synteny analysis among longan and five representative species implied the occurrence of gene duplication events was one of the reasons contributing to functional differentiation among species. RNA-seq data from various tissues showed DlR2R3-MYB genes displayed tissue-preferential expression patterns. The pathway of flower development was enriched with six DlR2R3-MYB genes. Cis-acting element prediction revealed the putative functions of DlR2R3-MYB genes were related to the plant development, phytohormones, and environmental stresses. Notably, the orthologous counterparts between Arabidopsis and longan R2R3-MYB members tended to play conserved roles in the flowering regulation and stress responses. Transcriptome profiling on off-season flower induction (FI) by KClO3 indicated two up-regulated and four down-regulated DlR2R3-MYB genes involved in the response to KClO3 treatment compared with control groups. Additionally, qRT-PCR confirmed certain genes exhibited high expression in flowers/flower buds. Subcellular localization experiments revealed that three predicted flowering-associated MYB proteins were localized in the nucleus. Future functional studies on these potential candidate genes involved in the flowering development could further the understanding of the flowering regulation mechanism.
Collapse
Affiliation(s)
- Qinchang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaosi Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Jisen Zhang,
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- *Correspondence: Jingping Fang,
| |
Collapse
|
4
|
Lee CJ, Kim SE, Park SU, Lim YH, Ji CY, Jo H, Lee JD, Yoon UH, Kim HS, Kwak SS. Overexpression of IbFAD8 Enhances the Low-Temperature Storage Ability and Alpha-Linolenic Acid Content of Sweetpotato Tuberous Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:764100. [PMID: 34777447 PMCID: PMC8589035 DOI: 10.3389/fpls.2021.764100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 05/13/2023]
Abstract
Sweetpotato is an emerging food crop that ensures food and nutrition security in the face of climate change. Alpha-linoleic acid (ALA) is one of the key factors affecting plant stress tolerance and is also an essential nutrient in humans. In plants, fatty acid desaturase 8 (FAD8) synthesizes ALA from linoleic acid (LA). Previously, we identified the cold-induced IbFAD8 gene from RNA-seq of sweetpotato tuberous roots stored at low-temperature. In this study, we investigated the effect of IbFAD8 on the low-temperature storage ability and ALA content of the tuberous roots of sweetpotato. Transgenic sweetpotato plants overexpressing IbFAD8 (TF plants) exhibited increased cold and drought stress tolerance and enhanced heat stress susceptibility compared with non-transgenic (NT) plants. The ALA content of the tuberous roots of TF plants (0.19 g/100 g DW) was ca. 3.8-fold higher than that of NT plants (0.05 g/100 g DW), resulting in 8-9-fold increase in the ALA/LA ratio in TF plants. Furthermore, tuberous roots of TF plants showed better low-temperature storage ability compared with NT plants. These results indicate that IbFAD8 is a valuable candidate gene for increasing the ALA content, environmental stress tolerance, and low-temperature storage ability of sweetpotato tuberous roots via molecular breeding.
Collapse
Affiliation(s)
- Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ye-Hoon Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | | | - Hyun Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ung-Han Yoon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
5
|
Sun J, Chen T, Liu M, Zhao D, Tao J. Analysis and Functional Verification of PoWRI1 Gene Associated with Oil Accumulation Process in Paeonia ostii. Int J Mol Sci 2021; 22:ijms22136996. [PMID: 34209706 PMCID: PMC8267616 DOI: 10.3390/ijms22136996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
The plant transcription factor WRINKLED1 (WRI1), a member of AP2/EREBP, is involved in the regulation of glycolysis and the expression of genes related to the de novo synthesis of fatty acids in plastids. In this study, the key regulator of seed oil synthesis and accumulation transcription factor gene PoWRI1 was identified and cloned, having a complete open reading frame of 1269 bp and encoding 422 amino acids. Subcellular localization analysis showed that PoWRI1 is located at the nucleus. After the expression vector of PoWRI1 was constructed and transformed into wild-type Arabidopsis thaliana, it was found that the overexpression of PoWRI1 increased the expression level of downstream target genes such as BCCP2, KAS1, and PKP-β1. As a result, the seeds of transgenic plants became larger, the oil content increased significantly, and the unsaturated fatty acid content increased, which provide a scientific theoretical basis for the subsequent use of genetic engineering methods to improve the fatty acid composition and content of plant seeds.
Collapse
Affiliation(s)
- Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tian Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mi Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87997219
| |
Collapse
|
6
|
Yu SY, Zhang Y, Lyu YP, Yao ZJ, Hu YH. Lipidomic profiling of the developing kernel clarifies the lipid metabolism of Paeonia ostii. Sci Rep 2021; 11:12605. [PMID: 34131230 PMCID: PMC8206221 DOI: 10.1038/s41598-021-91984-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Lipid components in the developing kernel of Paeonia ostii were determined, and the fatty acid (FA) distributions in triacylglycerol and phospholipids were characterized. The lipids in the kernel were mainly phospholipids (43%), neutral glycerides (24%), fatty acyls (26%), and sphingolipids (4.5%). The dominant neutral glycerides were TAG and diacylglycerol. The PL components included phosphatidic acid, phosphatidyl glycerol, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, and phosphatidyl ethanolamine. As the kernel developed, the profiles of the molecular species comprising TAG and PL changed, especially during the earlier phases of oil accumulation. During rapid oil accumulation, the abundances of sphingosine-1-phosphate, pyruvic acid, stearic acid, and alpha-linolenic acid changed significantly; the sphingolipid metabolism and unsaturated FAs biosynthesis pathways were significantly enriched in these differentially abundant metabolites. Our results improve our understanding of lipid accumulation in tree peony seeds, and provide a framework for the analysis of lipid metabolisms in other oil crops.
Collapse
Affiliation(s)
- Shui-Yan Yu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Ying Zhang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu-Ping Lyu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zu-Jie Yao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
7
|
Li C, Hu L, Que B, Hu Y, Guo Y, Zhang M, Wang Z, Wang X, Liu H, Wang J, Tian H, Li X. Expression profiles of genes involved in fatty acid and lipid biosynthesis in developing seeds of Paeonia ostii. Genes Genomics 2021; 43:885-896. [PMID: 33884569 DOI: 10.1007/s13258-021-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Paeonia ostii seeds were identified as novel sources of edible plant oil with a high proportion of α-linolenic acid, a type of n-3 fatty acid with many health benefits. Due to the unreliability of seed oil content and quality, it is necessary to discover the mechanism underlying lipid biosynthesis in Paeonia ostii seeds. OBJECTIVES This study aimed to identify the key genes involved in lipid biosynthesis in Paeonia ostii seeds by analyzing the relationship among the seed characteristics and the expression patterns of lipid genes in Paeonia ostii during seed development. METHODS Preliminary research on Paeonia ostii seed development was carried out from 10 days after pollination until maturity, focusing on phenology, oil content and lipid profiles. In addition, we investigated the spatiotemporal expression of 36 lipid biosynthetic genes in Paeonia ostii by using quantitative real-time PCR. RESULTS The results suggested that the development of Paeonia ostii seeds from pollination to maturity could be divided into three periods. The 36 lipid genes showed various spatiotemporal expression patterns and five gene groups with distinct temporal patterns during seed development were identified by clustering analysis of expression data. Furthermore, the relationships between gene expression and lipid/fatty acid accumulation and some candidate key lipid genes were discussed. CONCLUSIONS This study provided the global patterns of fatty acid and lipid biosynthesis-related gene expression, which are critical to understanding the molecular basis of lipid biosynthesis and identifying the lipid accumulation rate-limiting genes during seed development.
Collapse
Affiliation(s)
- Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China. .,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, 466001, Henan, China.
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Beibei Que
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yueran Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yuanyuan Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Minghui Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Zenan Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xueqin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Junsheng Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Huihui Tian
- College of Journalism and Media, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xiaoli Li
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, 466001, Henan, China.
| |
Collapse
|
8
|
Liu W, Yin DX, Zhang T, Hou XG, Qiao Q, Song P. Major Fatty Acid Compositions and Antioxidant Activity of Cultivated Paeonia ostii under Different Nitrogen Fertilizer Application. Chem Biodivers 2020; 17:e2000617. [PMID: 33078532 DOI: 10.1002/cbdv.202000617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Paeonia ostii is now being extensively planted for oil extraction in China, which is recognized as a single oil-use tree peony cultivar and commonly called 'Fengdan'. This study investigated the effects of nitrogen fertilizer on oil yield, fatty acid compositions and antioxidant activity of P. ostii. Oil yield (33.46 %), oleic acid (25.12 %), linoleic acid (29.21 %) and α-linolenic acid (43.12 %) reached the maximum at N450 treatment, with significant differences compared with other treatments (P<0.05). Furthermore, strong antioxidant activity with low DPPHIC50 value (19.43±1.91 μg mL-1 ) and large ABTS value (1216.53±30.21 μmol Trolox g-1 ) and FRAP value (473.57±9.11 μmol Trolox g-1 ) was also observed at N450. Palmitic acid (5.57 %) and stearic acid (2.02 %) reached a maximum at N375, but not significant with N450 (P<0.05). Nitrogen fertilizer could promote oil yield, fatty acid accumulation and antioxidant activity, and N450 (450 kg ha-1 ) is recommended as the optimum application for P. ostii.
Collapse
Affiliation(s)
- Wei Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Dong-Xue Yin
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, P. R. China
| | - Tong Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Xiao-Gai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Qi Qiao
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Peng Song
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| |
Collapse
|
9
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
10
|
Wang M, Gao L, Li G, Zhou C, Jian J, Xing Z, Wang Y, Zhang W, Song Z, Hu Y, Yang J. Interspecific Variation in the Unsaturation Level of Seed Oils Were Associated With the Expression Pattern Shifts of Duplicated Desaturase Genes and the Potential Role of Other Regulatory Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:616338. [PMID: 33519875 PMCID: PMC7838364 DOI: 10.3389/fpls.2020.616338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Seed oils are of great economic importance both for human consumption and industrial applications. The nutritional quality and industrial value of seed oils are mostly determined by their fatty acid profiles, especially the relative proportions of unsaturated fatty acids. Tree peony seed oils have recently been recognized as novel edible oils enriched in α-linolenic acid (ALA). However, congeneric species, such as Paeonia ostii and P. ludlowii, showed marked variation in the relative proportions of different unsaturated fatty acids. By comparing the dynamics of fatty acid accumulation and the time-course gene expression patterns between P. ostii and P. ludlowii, we identified genes that were differentially expressed between two species in developing seeds, and showed congruent patterns of variation between expression levels and phenotypes. In addition to the well-known desaturase and acyltransferase genes associated with fatty acid desaturation, among them were some genes that were conservatively co-expressed with the desaturation pathway genes across phylogenetically distant ALA-rich species, including Camelina sativa and Perilla frutescens. Go enrichment analysis revealed that these genes were mainly involved in transcriptional regulation, protein post-translational modification and hormone biosynthesis and response, suggesting that the fatty acid synthesis and desaturation pathway might be subject to multiple levels of regulation.
Collapse
Affiliation(s)
- Mengli Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Lexuan Gao
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Gengyun Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Chengchuan Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Jinjing Jian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Zhen Xing
- Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Yonghong Hu,
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Yonghong Hu,
| |
Collapse
|
11
|
Fan Y, Wang Q, Dong Z, Yin Y, Teixeira da Silva JA, Yu X. Advances in molecular biology of Paeonia L. PLANTA 2019; 251:23. [PMID: 31784828 DOI: 10.1007/s00425-019-03299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular biology can serve as a tool to solve the limitations of traditional breeding and cultivation techniques related to flower patterns, the improvement of flower color, and the regulation of flowering and stress resistance. These characteristics of molecular biology ensured its significant role in improving the efficiency of breeding and germplasm amelioration of Paeonia. This review describes the advances in molecular biology of Paeonia, including: (1) the application of molecular markers; (2) genomics, transcriptomics, proteomics, metabolomics, and microRNA studies; (3) studies of functional genes; and (4) molecular biology techniques. This review also points out select limitations in current molecular biology, analyzes the direction of Paeonia molecular biology research, and provides advice for future research objectives.
Collapse
Affiliation(s)
- Yongming Fan
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Qi Wang
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Zhijun Dong
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Yijia Yin
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China.
| |
Collapse
|
12
|
Ma G, Zou Q, Shi X, Tian D, Sheng Q. Ectopic expression of the AaFUL1 gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco. Gene 2019; 696:197-205. [PMID: 30802537 DOI: 10.1016/j.gene.2019.02.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022]
Abstract
Anthurium andraeanum is a high-grade potted flower that enjoys global popularity. Its floral organs have been substantially modified, and its ornamental value is based on its petaloid bracts. MADS-box gene products are important transcription factors that control plant development. In particular, the APETALA1 (AP1)/FRUITFULL (FUL) family of MADS-box genes plays a key role in flowering transitions and out-whorl floral organ identity specification. In this report, one FUL-like gene was cloned from Anthurium andraeanum and named AaFUL1 after bioinformatics identification. Subsequent subcellular localization experiments confirmed that the AaFUL1 protein was located in the nucleus, and data obtained from an expression analysis indicated that the relative expression level of AaFUL1 was the highest in bracts and inflorescences, while its expression was relatively low in stems and roots. Next, an AaFUL1 overexpression vector was constructed and ectopically expressed in tobacco. The transformants did not show any early flowering phenotype, but the average internode length of the inflorescence branch was significantly higher than that observed in the control, and its petal color had substantially faded. The morphology of the petal and pistil was clearly changed, the fruit was deformed, and the seed was largely aborted. These data indicate that even though the sequence of AaFUL1 is relatively conserved, its function differs from that of other orthologs, and the FUL subfamily of MADS-box transcription factors may have taken on new functions during the evolution processes. The results of this experiment enrich our knowledge of FUL transcription factors in monocotyledon plants.
Collapse
Affiliation(s)
- Guangying Ma
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Qingcheng Zou
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaohua Shi
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Danqing Tian
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|