1
|
Rababi D, Nag A. Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study. 3 Biotech 2023; 13:174. [PMID: 37180429 PMCID: PMC10170460 DOI: 10.1007/s13205-023-03595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
The current study attempted to evaluate the potential of fifty-three (53) natural compounds as Nipah virus attachment glycoprotein (NiV G) inhibitors through in silico molecular docking study. Pharmacophore alignment of the four (4) selected compounds (Naringin, Mulberrofuran B, Rutin and Quercetin 3-galactoside) through Principal Component Analysis (PCA) revealed that common pharmacophores, namely four H bond acceptors, one H bond donor and two aromatic groups were responsible for the residual interaction with the target protein. Out of these four compounds, Naringin was found to have the highest inhibitory potential ( - 9.19 kcal mol-1) against the target protein NiV G, when compared to the control drug, Ribavirin ( - 6.95 kcal mol-1). The molecular dynamic simulation revealed that Naringin could make a stable complex with the target protein in the near-native physiological condition. Finally, MM-PBSA (Molecular Mechanics-Poisson-Boltzmann Solvent-Accessible Surface Area) analysis in agreement with our molecular docking result, showed that Naringin ( - 218.664 kJ mol-1) could strongly bind with the target protein NiV G than the control drug Ribavirin ( - 83.812 kJ mol-1). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03595-y.
Collapse
Affiliation(s)
- Deblina Rababi
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
2
|
Chen Y, Wang Y, Jiang S, Xu J, Wang B, Sun X, Zhang Y. Red-fleshed apple flavonoid extract alleviates CCl 4-induced liver injury in mice. Front Nutr 2023; 9:1098954. [PMID: 36742007 PMCID: PMC9890596 DOI: 10.3389/fnut.2022.1098954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
In recent years, the global incidence of liver damage has increased. Despite the many known health benefits of red-fleshed apple flavonoids, their potential liver-protective effects have not yet been investigated. In this study, we analyzed the composition of red-fleshed apple flavonoid extract (RAFE) by high-performance liquid chromatography (HPLC). We then induced liver damage in mice with carbon tetrachloride (CCl4) and performed interventions with RAFE to analyze its effect on liver damage, using bifendate as a positive control. The results showed that catechin was the most abundant flavonoid in 'XJ4' RAFE (49.346 mg/100 g). In liver-injured mice, the liver coefficients converged to normal levels following RAFE intervention. Moreover, RAFE significantly reduced the enzymatic activity levels of glutamic oxaloacetic transaminase (ALT), glutamic alanine transaminase (AST), and alkaline phosphatase (ALP) in mouse serum. Furthermore, RAFE significantly increased the content or enzyme activity level of total glutathione, total antioxidant capacity, and superoxide dismutase, and significantly decreased the content of malondialdehyde in the liver of mice. In parallel, we performed histopathological observations of mouse livers for each group. The results showed that RAFE restored the pathological changes caused by CCl4 around the central hepatic vein in mice and resulted in tightly bound hepatocytes. The recovery effect of RAFE was dose-dependent in the liver tissue. Regarding intestinal microorganisms, we found that RAFE restored the microbial diversity in liver-injured mice, with a similar microbial composition in the RAFE intervention group and normal group. RAFE reduced the ratio of Firmicutes to Bacteroidetes, increased the levels of probiotic bacteria, such as Lactobacillus acidophilus, and Clostridium, and reduced the levels of harmful bacteria, such as Erysipelothrix Rosenbach. Therefore, RAFE ameliorated CCl4-induced liver damage by modulating the abundance and composition of intestinal microorganisms in mice. In conclusion, RAFE alleviated CCl4-induced liver damage in mice, with H-RAFE (5 mg kg-1) significantly improving liver damage in mice but M-RAFE (1 mg kg-1) significantly improving the imbalance of intestinal microorganisms in mice. Our research suggests that RAFE could be employed for the adjuvant treatment and prevention of liver damage, and may have important applications in food and medicine.
Collapse
Affiliation(s)
- Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Shenghui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
A New Pyrrolidone Alkaloid and Other Constituents from Rourea oligophlebia Stems. J CHEM-NY 2021. [DOI: 10.1155/2021/6659106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochemical study of Rourea oligophlebia stems led to the isolation of a new 2-pyrrolidone alkaloid (R,S)-N-(5-hydroxyl-pyrrolidin-2-one-1-yl)acetamide (1), together with 14 known compounds including friedelin (2), friedanol (3), taraxerol (4), vanillin (5), coniferyl aldehyde (6), apigenin (7), 7α-hydroxy-3β-sitosterol (8), coniferyl alcohol (9), scopoletin (10), emodin (11), protocatechuic acid (12), catechin (13), procyanidin A1 (14), and (E)-2,3,5,4’-tetrahydroxystilbene-2-β-D-glucoside (15). Several isolated compounds were evaluated for cytotoxicity and antimicrobial activity. Compound 11 exhibited good antimicrobial activity on Gram (+) strains and moderate cytotoxicity against KB, Hep-G2, and LU cancer cell lines. Compounds 6 and 8–10 showed selective activity on HepG-2 and MCF-7 over KB and LU cancer cell lines, while compound 7 exhibited similar effects on KB, HepG-2, and MCF-7 cell lines with IC50 values of 36.46 ± 0.81, 32.00 ± 0.58, and 32.03 ± 0.61 µg/mL, respectively.
Collapse
|
4
|
Ahmad MH, Jatau AI, Khalid GM, Alshargi OY. Traditional uses, phytochemistry, and pharmacological activities of Cochlospermum tinctorium A. Rich (Cochlospermaceae): a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-020-00168-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The plant Cochlospermum tinctorium A. Rich is a sub-shrub that belongs to the family Cochlospermaceae. The plant has been used in traditional medicine for the treatment of malaria, rickets, stomachache, diarrhea, gastric ulcer, parasitic infestations, liver diseases, fever, pain, inflammation, infectious diseases, epilepsy, snake bite, burns, orchitis, labour, menstrual problems, and many other diseases. This review summarizes the traditional uses, phytochemistry, and pharmacological activities of Cochlospermum tinctorium.
Main text
To date, few bioactive molecules have been identified and isolated from the plant such as 7,3-dimethyldihydroquercelin, 5,4-dimethylquercelin, cochloxanthine, dihydrocochloxanthine, arjunolic acid, 3-O-E-p-coumaroylalphitolic acid, alphitolic acid, 1-hydroxytetradecan-3-one, 3-bisabolen, 2-tridecanone, 3-hexadecanone, 1-dodecanol, l-tetradecanol, 2-pentdecanone, 3-octadecanone, 1-hydroxy-3-hexadecanone, 1-nonadecanol, l-O-acetyl-3-hexadecanone, and l-hydroxy-3-oetadecanone. The literature related some of the reported ethnomedicinal uses of the plant to these compounds found in the different parts of the plant.
Conclusion
The comprehensive information documented in this review about the importance of the C. tinctorium may provide an opportunity for research advancement in drug discovery and a better understanding of the medicinal benefits of the plant.
Collapse
|
5
|
Thuc DN, Thuy VT, Mai VTH, Thanh LN, Van Quan V. Chemical constituents from ethyl acetate extract of the stems of Rourea oligophlebia
Merr. VIETNAM JOURNAL OF CHEMISTRY 2020. [DOI: 10.1002/vjch.201900082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Vu Thi Thuy
- Hong Duc University; Thanh Hoa Province 40000 Viet Nam
| | - Vu Thi Ha Mai
- Hong Duc University; Thanh Hoa Province 40000 Viet Nam
| | - Le Nguyen Thanh
- Institute of Marine Biochemistry and Graduate University of Science and Technology, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay Hanoi 10000 Viet Nam
| | - Vo Van Quan
- Department of Natural Sciences, Quang Tri Teacher Training College; Quang Tri 48000 Viet Nam
| |
Collapse
|
6
|
Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem Biol Interact 2019; 309:108707. [DOI: 10.1016/j.cbi.2019.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
7
|
Sánchez-Salgado JC, Estrada-Soto S, García-Jiménez S, Montes S, Gómez-Zamudio J, Villalobos-Molina R. Analysis of Flavonoids Bioactivity for Cholestatic Liver Disease: Systematic Literature Search and Experimental Approaches. Biomolecules 2019; 9:biom9030102. [PMID: 30875780 PMCID: PMC6468533 DOI: 10.3390/biom9030102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are naturally occurring compounds that show health benefits on the liver. However, there is little investigation about identification and evaluation of new flavonoid-containing drugs for cholestatic liver disease, one of the most common liver illnesses. We aimed to a systematic search regarding efficacy of flavonoids for treatment of cholestatic liver disease, and then evaluate naringenin (NG) as representative flavonoid in an obstructive cholestasis model. We searched for information of experimental and clinical studies in four major databases without time and language limits. Intervention was defined as any flavonoid derivate compared with other flavonoid, placebo, or without comparator. In addition, we evaluated NG on a bile duct-ligated model in order to contribute evidence of its actions. Eleven experimental reports that support the efficacy of flavonoids in cholestatic liver disease were identified. However, there was no homogeneity in efficacy endpoints evaluated and methodology. On the other hand, NG showed beneficial effects by improving specific metabolic (cholesterol and lipoproteins) and liver damage (bilirubin and alkaline phosphatase) biomarkers. The review lacks homogeneous evidence about efficacy of flavonoids in experimental settings, and is susceptible to risk for bias. NG only showed improvements in specific disease biomarkers. More investigation is still needed to determine its potential for drug development.
Collapse
Affiliation(s)
- Juan Carlos Sánchez-Salgado
- Instituto de Medicina Molecular y Ciencias Avanzadas, Mexico City 01900, Mexico.
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR 62209, Mexico.
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR 62209, Mexico.
| | - Sara García-Jiménez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR 62209, Mexico.
| | - Sergio Montes
- Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico.
| | - Jaime Gómez-Zamudio
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, México City 06720, Mexico.
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico.
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.
| |
Collapse
|