1
|
Saulle I, Vitalyos AV, D’Agate D, Clerici M, Biasin M. Unveiling the impact of ERAP1 and ERAP2 on migration, angiogenesis and ER stress response. Front Cell Dev Biol 2025; 13:1564649. [PMID: 40226591 PMCID: PMC11985534 DOI: 10.3389/fcell.2025.1564649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Recent studies have investigated the key roles exerted by ERAP1 and ERAP2 in maintaining cellular homeostasis, emphasizing their functions beyond traditional antigen processing and presentation. In particular, genetic variants of these IFNγ-inducible aminopeptidases significantly impact critical cellular pathways, including migration, angiogenesis, and autophagy, which are essential in immune responses and disease processes. ERAP1's influence on endothelial cell migration and VEGF-driven angiogenesis, along with ERAP2's role in managing stress-induced autophagy via the UPR, highlights their importance in cellular adaptation to stress and disease outcomes, including autoimmune diseases, cancer progression, and infections. By presenting recent insights into ERAP1 and ERAP2 functions, this review underscores their potential as therapeutic targets in immune regulation and cellular stress-response pathways.
Collapse
Affiliation(s)
- Irma Saulle
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
| | | | - Daniel D’Agate
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Mara Biasin
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| |
Collapse
|
2
|
Fougiaxis V, Barcherini V, Petrovic MM, Sierocki P, Warenghem S, Leroux F, Bou Karroum N, Petit-Cancelier F, Rodeschini V, Roche D, Deprez B, Deprez-Poulain R. First fragment-based screening identifies new chemotypes inhibiting ERAP1-metalloprotease. Eur J Med Chem 2024; 280:116926. [PMID: 39369482 DOI: 10.1016/j.ejmech.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) by small-molecules is being eagerly investigated for the treatment of various autoimmune diseases and in the field of immuno-oncology after its active involvement in antigen presentation and processing. Currently, ERAP1 inhibitors are at different stages of clinical development, which highlights its significance as a promising drug target. In the present work, we describe the first-ever successful identification of several ERAP1 inhibitors derived from a fragment-based screening approach. We applied an enzymatic activity assay to a large library of ∼3000 fragment entries in order to retrieve 32 hits. After a multi-faceted selection process, we prioritized 3 chemotypes for SAR optimization and strategic modifications provided 2 series (2-thienylacetic acid and rhodanine scaffolds) with improved analogues at the low micromolar range of ERAP1 inhibition. We report also evidence of selectivity against homologous aminopeptidase IRAP, combined with complementary in silico docking studies to predict the binding mode and site of inhibition. Our compounds can be the starting point for future fragment growing and rational drug development, incorporating new chemical modalities.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Valentina Barcherini
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Milena M Petrovic
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Pierre Sierocki
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Nour Bou Karroum
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | | | - Vincent Rodeschini
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Didier Roche
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France.
| |
Collapse
|
3
|
Vargas-Pinilla P, S Oliveira Fam B, Medina Tavares G, Lima T, Landau L, Paré P, de Cássia Aleixo Tostes R, Pissinatti A, Falótico T, Costa-Neto C, Maestri R, Bortolini MC. From molecular variations to behavioral adaptations: Unveiling adaptive epistasis in primate oxytocin system. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24947. [PMID: 38783700 DOI: 10.1002/ajpa.24947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Our primary objective was to investigate the variability of oxytocin (OT) and the GAMEN binding motif within the LNPEP oxytocinase in primates. MATERIALS AND METHODS We sequenced the LNPEP segment encompassing the GAMEN motif in 34 Platyrrhini species, with 21 of them also sequenced for the OT gene. Our dataset was supplemented with primate sequences of LNPEP, OT, and the oxytocin receptor (OTR) sourced from public databases. Evolutionary analysis and coevolution predictions were made followed by the macroevolution analysis of relevant amino acids associated with phenotypic traits, such as mating systems, parental care, and litter size. To account for phylogenetic structure, we utilized two distinct statistical tests. Additionally, we calculated binding energies focusing on the interaction between Callithtrix jacchus VAMEN and Pro8OT. RESULTS We identified two novel motifs (AAMEN and VAMEN), challenging the current knowledge of motif conservation in placental mammals. Coevolution analysis demonstrated a correlation between GAMEN, AAMEN, and VAMEN and their corresponding OTs and OTRs. Callithrix jacchus exhibited a higher binding energy between VAMEN and Pro8OT than orthologous molecules found in humans (GAMEN and Leu8OT). DISCUSSION The coevolution of AAMEN and VAMEN with their corresponding OTs and OTRs suggests a functional relationship that could have contributed to specific reproductive and adaptive behaviors, including paternal care, social monogamy, and twin births, prominent traits in Cebidae species, such as marmosets and tamarins. Our findings underscore the coevolution of taxon-specific amino acids among the three studied molecules, shedding light on the oxytocinergic system as an adaptive epistatic repertoire in primates.
Collapse
Affiliation(s)
- Pedro Vargas-Pinilla
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Farmacologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bibiana S Oliveira Fam
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gustavo Medina Tavares
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaynara Lima
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luane Landau
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Pâmela Paré
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Tiago Falótico
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudio Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Renan Maestri
- Laboratório de Ecomorfologia e Macroevolução, Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Cátira Bortolini
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Fougiaxis V, He B, Khan T, Vatinel R, Koutroumpa NM, Afantitis A, Lesire L, Sierocki P, Deprez B, Deprez-Poulain R. ERAP Inhibitors in Autoimmunity and Immuno-Oncology: Medicinal Chemistry Insights. J Med Chem 2024; 67:11597-11621. [PMID: 39011823 DOI: 10.1021/acs.jmedchem.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ben He
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Tuhina Khan
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rodolphe Vatinel
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | | | | | - Laetitia Lesire
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Pierre Sierocki
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Benoit Deprez
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Mansouri M, Daware K, Webb CT, McGowan S. Understanding the structure and function of Plasmodium aminopeptidases to facilitate drug discovery. Curr Opin Struct Biol 2023; 82:102693. [PMID: 37657352 DOI: 10.1016/j.sbi.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Malaria continues to be the most widespread parasitic disease affecting humans globally. As parasites develop drug resistance at an alarming pace, it has become crucial to identify novel drug targets. Over the last decade, the metalloaminopeptidases have gained importance as potential targets for new antimalarials. These enzymes are responsible for removing the N-terminal amino acids from proteins and peptides, and their restricted specificities suggest that many perform unique and essential roles within the malaria parasite. This mini-review focuses on the recent progress in structure and functional data relating to the Plasmodium metalloaminopeptidases that have been validated or shown promise as new antimalarial drug targets.
Collapse
Affiliation(s)
- Mahta Mansouri
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia. https://twitter.com/Mahta__Mansouri
| | - Kajal Daware
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia.
| |
Collapse
|
6
|
Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Mar Drugs 2023; 21:md21050279. [PMID: 37233473 DOI: 10.3390/md21050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Almeida García
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Mario Ernesto Valdés Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Daniel Ojeda Del Sol
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | | | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Marjorie Schmitt
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68000 Mulhouse, France
| | - Francesc Xavier Avilés
- Institute for Biotechnology and Biomedicine and Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Driving antimalarial design through understanding of target mechanism. Biochem Soc Trans 2020; 48:2067-2078. [PMID: 32869828 PMCID: PMC7609028 DOI: 10.1042/bst20200224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
Malaria continues to be a global health threat, affecting approximately 219 million people in 2018 alone. The recurrent development of resistance to existing antimalarials means that the design of new drug candidates must be carefully considered. Understanding of drug target mechanism can dramatically accelerate early-stage target-based development of novel antimalarials and allows for structural modifications even during late-stage preclinical development. Here, we have provided an overview of three promising antimalarial molecular targets, PfDHFR, PfDHODH and PfA-M1, and their associated inhibitors which demonstrate how mechanism can inform drug design and be effectively utilised to generate compounds with potent inhibitory activity.
Collapse
|
8
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
9
|
Aminobenzosuberone derivatives as PfA-M1 inhibitors: Molecular recognition and antiplasmodial evaluation. Bioorg Chem 2020; 98:103750. [DOI: 10.1016/j.bioorg.2020.103750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
|
10
|
Oyegue-Liabagui SL, Imboumy-Limoukou RK, Kouna CL, Bangueboussa F, Schmitt M, Florent I, Lekana-Douki JB. IgG antibody response against Plasmodium falciparum aminopeptidase 1 antigen in Gabonese children living in Makokou and Franceville. Clin Exp Immunol 2020; 200:287-298. [PMID: 32027020 DOI: 10.1111/cei.13425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 11/28/2022] Open
Abstract
The search for novel chemical classes of anti-malarial compounds to cope with the current state of chemoresistance of malaria parasites has led to the identification of Plasmodium falciparum aminopeptidase 1 (PfA-M1) as a new therapeutic target. PfA-M1, known to be involved in the hemoglobin digestion cascade which helps to provide most of the amino acids necessary to the parasite's metabolism, is currently considered as a promising target for anti-malarial chemotherapy. However, its immunogenic properties have not yet been tested in the Gabonese population. In Gabon, the prevalence of malaria remains three times higher in semi-urban areas (60·12%) than in urban areas (17·06%). We show that malaria-specific PfA-M1 antibodies are present in children and increase with the level of infection. Children living in semi-urban areas have higher anti-PfA-M1 antibody titers (0·14 ± 0·02 AU) than those living in urban areas (0·08 ± 0·02 AU, P = 0·03), and their antibody titers increase with age (P < 0·0001). Moreover, anti-PfA-M1 antibody titers decrease in children with hyperparasitemia (0·027 ± 0·055 AU) but they remain high in children with low parasite density (0·21 ± 0·034 AU, P = 0·034). In conclusion, our results suggest that malaria-specific PfA-M1 antibodies may play an important role in the immune response of the host against P. falciparum in Gabonese children. Further studies on the role of PfA-M1 during anemia are needed.
Collapse
Affiliation(s)
- S L Oyegue-Liabagui
- Laboratoire de Recherches en Immunologie, Parasitologie et Microbiologie, Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - R-K Imboumy-Limoukou
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - C L Kouna
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - F Bangueboussa
- Laboratoire de Recherches en Immunologie, Parasitologie et Microbiologie, Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université des Sciences et Techniques de Masuku, Franceville, Gabon.,Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - M Schmitt
- Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
| | - I Florent
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, Paris, France
| | - J B Lekana-Douki
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.,Département de Parasitologie-Mycologie, Université des Sciences de la Santé, Libreville, Gabon
| |
Collapse
|