1
|
Feng A, Li L, He N, Li D, Zheng D, Liu Y, Yang H. A ratiometric electrochemical biosensor based on ARGET ATRP for detection of HER2 gene. Talanta 2024; 275:126130. [PMID: 38653117 DOI: 10.1016/j.talanta.2024.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2), a common proto-oncogene, is overexpressed in a subset of breast cancer patients. It is essential to track HER2 expression for early breast cancer diagnosis. Herein, a ratiometric electrochemical biosensor for detection of HER2 based on activators generated by electron transfer for atom transfer radical polymerisation (AGET ATRP) and hairpin DNA was developed. Specifically, hairpin DNA was first self-assembled on the gold electrode by Au-S bond. Upon capturing HER2, the stem-loop structure of hairpin DNA was unfolded, the signal value of methylene blue (MB) decreased as it moved away from the electrode surface. cDNA was linked with HER2 by complementary base pairing to introduce amino group. Then, the initiator 2-bromo-2-methylpropionic acid (BMP) were connected to the amino group on the cDNA to activate ARGET ATRP. The detection performance of biosensors for HER2 was explored by the ratio signal between two signal molecules. Under optimal conditions, this ratiometric electrochemical biosensor shows good selectivity and stability with a wide detection range of 1-1 × 106 pM and a detection limit of 78.47 fM. Furthermore, the biosensor exhibits satisfactory anti-interference ability due to the hairpin DNA and dual signal system, and has promising application prospects in the detection of other DNA disease markers.
Collapse
Affiliation(s)
- Aozi Feng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Li Li
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Ningxia He
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Daoxiang Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Danna Zheng
- Science and Education Office, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Chupradit S, Jasim SA, Bokov D, Mahmoud MZ, Roomi AB, Hachem K, Rudiansyah M, Suksatan W, Bidares R. Recent advances in biosensor devices for HER-2 cancer biomarker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1301-1310. [PMID: 35318477 DOI: 10.1039/d2ay00111j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The human epidermal growth factor receptor 2 (HER-2) protein is a member of the epidermal growth factor receptor (EGFR or ErbB) family and is a transmembrane tyrosine kinase receptor. HER-2 is highly regulated in ovarian, lung, gastric, oral, and breast cancers. The low specificity, complexity, expensiveness and the lack of sensitivity are essential restrictions in traditional diagnosis methods such as FISH, immunohistochemistry and PCR and these disadvantages led to the need for more studies on alternative methods. Biosensor technology has greatly affected the quality of human life owing to its features including, sensitivity, specificity, and rapid diagnosis and monitoring of different patient diseases. In this review article, we examine various biosensors, considering that they have been categorized based on the transducers used including piezoelectric biosensors, optical sensors such as fluorescence and surface plasmon resonance, and electrochemical types for the diagnosis of HER-2 and the effectiveness of some drugs against that. Attention to developing some types of biosensor devices such as colorimetric biosensors for HER-2 detection can be an important point in future studies.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Mustafa Z Mahmoud
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Ali B Roomi
- PhD Biochemistry, Ministry of Education, Directorate of Education Thi-Qar, Thi-Qar, 64001, Iraq
- Biochemistry and Biological Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida - Dr Moulay Tahar, 20000 Saida, Algeria
| | - Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Ramtin Bidares
- Department of Anatomy, Histology Forensic Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Ning J, Luo X, Wang F, Huang S, Wang J, Liu D, Liu D, Chen D, Wei J, Liu Y. Synergetic Sensing Effect of Sodium Carboxymethyl Cellulose and Bismuth on Cadmium Detection by Differential Pulse Anodic Stripping Voltammetry. SENSORS 2019; 19:s19245482. [PMID: 31842415 PMCID: PMC6960847 DOI: 10.3390/s19245482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
In the present work, a novel electrochemical sensor was developed for the detection of trace cadmium with high sensitivity and selectivity in an easy and eco-friendly way. Firstly, a glassy carbon electrode (GCE) was modified with nontoxic sodium carboxymethyl cellulose (CMC) by a simple drop-casting method, which was applied to detect cadmium by differential pulse anodic stripping voltammetry (DPASV) in a solution containing both target cadmium and eco-friendly bismuth ions, based on a quick electro-codeposition of these two metal ions on the surface of the modified electrode (CMC-GCE). Investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR), both CMC (with good film-forming ability) and bismuth (with well-defined stripping signal) were found to be well complexed with target cadmium, leading to vital signal amplification for cadmium detection at a sub-nanomolar level. Under the optimal conditions, the proposed sensor exhibited a good linear stripping signal response to cadmium (Ⅱ) ion, in a concentration range of 0.001 μmol/L–1 μmol/L with a limit of detection of 0.75 nmol/L (S/N = 3). Meanwhile, the results demonstrate that this novel electrochemical sensor has excellent sensitivity and reproducibility, which can be used as a promising detection technique for testing natural samples such as tap water.
Collapse
|