1
|
Shen W, Wu S, Ge X, Ao F, Mao Y, Hu J, Yan P. Preparation of gastrodin modified P(VDF-TrFE)-Eudragit L100-AuNPs nanofiber membranes with piezoelectric property. J Mech Behav Biomed Mater 2024; 151:106355. [PMID: 38176196 DOI: 10.1016/j.jmbbm.2023.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
In recent years, electroactive nerve conduits made from a blend of P(VDF-TrFE) (poly (vinylidene fluoride-trifluoroethylene)) with other materials have shown significant progress. However, research combining P(VDF-TrFE) conduits with drug delivery systems remains sparse. In this study, we developed a novel gastrodin-loaded P(VDF-TrFE)-Eudragit L100-gold nanoparticles (Gas@PT-EL100-AuNPs) nanofiber membrane. Fabricated through electrospinning technique, this composite membrane aimed to investigate the impacts of gastrodin and AuNPs on its properties. Experimental results indicated that the incorporation of gold nanoparticles significantly reduced the fiber diameter of the membrane and enhanced the overall performance by improving hydrophilicity and piezoelectric properties. Specifically, the addition of AuNPs substantially enhanced the piezoelectric performance of the nanofiber membrane. Furthermore, the inclusion of gastrodin not only improved the membrane's hydrophilicity but also enabled effective release of the neuroprotective drug. These findings suggest that the Gas@PT-EL100-AuNPs nanofiber membrane is a novel biomaterial with potential applications in the repair and treatment of nerve injuries.
Collapse
Affiliation(s)
- Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jiaru Hu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Pi Yan
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Thakur N, Goswami M, Deka Dey A, Kaur B, Sharma C, Kumar A. Fabrication and Synthesis of Thiococlchicoside Loaded Matrix Type Transdermal Patch. Pharm Nanotechnol 2024; 12:143-154. [PMID: 37282636 DOI: 10.2174/2211738511666230606120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The goal of this work was to synthesize and fabricate matrix type transdermal patches based on a combination of polymers (Eudragit L100, HPMC and PVP K30), plasticizer and crosslinking agents (propylene glycol and triethyl citrate) and adhesives (Dura Tak 87-6908) to increase Thiocolchicoside (THC) absorption via topical route. This method allows avoidance of first-pass metabolism along with a consistent and extended duration of therapeutic activity. METHODS Fabrication and casting of polymeric solutions containing THC was done either in petri plates or through lab coater to get transdermal patches. Finally, the formulated patches were studied for their physicochemical and biological evaluation using scanning electron microscopy, FTIR, DSC, XRD and ex-vivo permeation studies using pig ear skin. RESULTS FTIR studies confirm that the THC characteristics peaks (carbonyl (Amide I) at 1525.5 cm-1, C=O stretching (tropane ring) at 1664.4 cm-1, Amide II band (N-H stretching) at 3325.9 cm-1, thioether band at 2360.7 cm-1, and OH group stretching band at 3400.2 cm-1) are still present in the polymer mixture even after formulation as a transdermal patch, indicating compatibility among all excipients. While on the other hand, DSC studies confirm endothermic peaks for all the polymers along with THC with the highest enthalpy of 65.979 J/g, which is an indicator of sharp endothermic peak at 198°C, leading to the melting of THC. The percentage drug content and percentage moisture uptake of all the formulation was found in the range of 96 ± 2.04 to 98.56 ± 1.34% and 4.13 ± 1.16 to 8.23 ± 0.90%, respectively. Drug release and release kinetics studies confirm that it is dependent on the composition of individual formulation. CONCLUSION All these findings support the possibility of using suitable polymeric composition, as well as proper formulation and manufacturing circumstances, to create a one-of-a-kind technology platform for transdermal drug administration.
Collapse
Affiliation(s)
- Nishant Thakur
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan Mohali, Punjab, 140413, India
| | - Manish Goswami
- Department of Pharmaceutics, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, 140413, India
| | - Asmita Deka Dey
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bhupinder Kaur
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan Mohali, Punjab, 140413, India
| | - Chandan Sharma
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan Mohali, Punjab, 140413, India
| | - Arun Kumar
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824209, India
| |
Collapse
|
3
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
4
|
Ruzgar Ozemre G, Kara A, Pezik E, Tort S, Vural İ, Acartürk F. Preparation of nanodelivery systems for oral administration of low molecular weight heparin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Cyclodextrin Derivatives as Promising Solubilizers to Enhance the Biological Activity of Rosmarinic Acid. Pharmaceutics 2022; 14:pharmaceutics14102098. [PMID: 36297533 PMCID: PMC9611598 DOI: 10.3390/pharmaceutics14102098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Rosmarinic acid (RA) is a natural antioxidant with neuroprotective properties; however, its preventive and therapeutic use is limited due to its slight solubility and poor permeability. This study aimed to improve RA physicochemical properties by systems formation with cyclodextrins (CDs): hydroxypropyl-α-CD (HP-α-CD), HP-β-CD, and HP-γ-CD, which were prepared by the solvent evaporation (s.e.) method. The interactions between components were determined by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier Transform infrared spectroscopy (FTIR). The sites of interaction between RA and CDs were suggested as a result of in silico studies focused on assessing the interaction between molecules. The impact of amorphous systems formation on water solubility, dissolution rate, gastrointestinal (GIT) permeability, and biological activity was studied. RA solubility was increased from 5.869 mg/mL to 113.027 mg/mL, 179.840 mg/mL, and 194.354 mg/mL by systems formation with HP-α-CD, HP-β-CD, and HP-γ-CD, respectively. During apparent solubility studies, the systems provided an acceleration of RA dissolution. Poor RA GIT permeability at pH 4.5 and 5.8, determined by parallel artificial membrane permeability assay (PAMPA system), was increased; RA–HP-γ-CD s.e. indicated the greatest improvement (at pH 4.5 from Papp 6.901 × 10−7 cm/s to 1.085 × 10−6 cm/s and at pH 5.8 from 5.019 × 10−7 cm/s to 9.680 × 10−7 cm/s). Antioxidant activity, which was determined by DPPH, ABTS, CUPRAC, and FRAP methods, was ameliorated by systems; the greatest results were obtained for RA–HP-γ-CD s.e. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was increased from 36.876% for AChE and 13.68% for BChE to a maximum inhibition of the enzyme (plateau), and enabled reaching IC50 values for both enzymes by all systems. CDs are efficient excipients for improving RA physicochemical and biological properties. HP-γ-CD was the greatest one with potential for future food or dietary supplement applications.
Collapse
|
6
|
Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Andriotis EG, Chachlioutaki K, Monou PK, Bouropoulos N, Tzetzis D, Barmpalexis P, Chang MW, Ahmad Z, Fatouros DG. Development of Water-Soluble Electrospun Fibers for the Oral Delivery of Cannabinoids. AAPS PharmSciTech 2021; 22:23. [PMID: 33400042 DOI: 10.1208/s12249-020-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 μm for Eudragit L-100 fibers. The encapsulation efficiency for both CB and CBG was high (over 90%) for all formulations tested. Both in vitro release and disintegration tests of the formulations in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF) indicated the rapid disintegration and dissolution of the fibers and the subsequent rapid release of the drugs. The study concluded that the electrospinning process is a fast and efficient method to produce drug-loaded fibers suitable for the per os administration of cannabinoids.
Collapse
|
8
|
Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils. MATERIALS 2020; 13:ma13071618. [PMID: 32244692 PMCID: PMC7178294 DOI: 10.3390/ma13071618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
This research aimed to obtain biocompatible and antimicrobial nanofibres based on concentrated collagen hydrolysate loaded with thyme or oregano essential oils as a natural alternative to synthesis products. The essential oils were successfully incorporated using electrospinning process into collagen resulting nanofibres with diameter from 471 nm to 580 nm and porous structure. The presence of essential oils in collagen nanofibre mats was confirmed by Attenuated Total Reflectance -Fourier Transform Infrared Spectroscopy (ATR-FTIR), Ultraviolet-visible spectroscopy (UV-VIS) and antimicrobial activity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy analyses allowed evaluating the morphology and constituent elements of the nanofibre networks. Microbiological tests performed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans showed that the presence of essential oils supplemented the new collagen nanofibres with antimicrobial properties. The biocompatibility of collagen and collagen with essential oils was assessed by in vitro cultivation with NCTC clone 929 of fibroblastic cells and cell viability measurement. The results showed that the collagen and thyme or oregano oil composites have no cytotoxicity up to concentrations of 1000 μg·mL-1 and 500 μg mL-1, respectively. Optimization of electrospinning parameters has led to the obtaining of new collagen electrospun nanofibre mats loaded with essential oils with potential use for wound dressings, tissue engineering or protective clothing.
Collapse
|
10
|
Aliheidari N, Aliahmad N, Agarwal M, Dalir H. Electrospun Nanofibers for Label-Free Sensor Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3587. [PMID: 31426538 PMCID: PMC6720643 DOI: 10.3390/s19163587] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Electrospinning is a simple, low-cost and versatile method for fabricating submicron and nano size fibers. Due to their large surface area, high aspect ratio and porous structure, electrospun nanofibers can be employed in wide range of applications. Biomedical, environmental, protective clothing and sensors are just few. The latter has attracted a great deal of attention, because for biosensor application, nanofibers have several advantages over traditional sensors, including a high surface-to-volume ratio and ease of functionalization. This review provides a short overview of several electrospun nanofibers applications, with an emphasis on biosensor applications. With respect to this area, focus is placed on label-free sensors, pertaining to both recent advances and fundamental research. Here, label-free sensor properties of sensitivity, selectivity, and detection are critically evaluated. Current challenges in this area and prospective future work is also discussed.
Collapse
Affiliation(s)
- Nahal Aliheidari
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Nojan Aliahmad
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| | - Hamid Dalir
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| |
Collapse
|