1
|
Yu M, Wang P. A comparative study of ProGRP and CEA as serological markers in small cell lung cancer treatment. Discov Oncol 2024; 15:485. [PMID: 39331166 PMCID: PMC11436604 DOI: 10.1007/s12672-024-01323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Small Cell Lung Cancer (SCLC) presents a significant clinical challenge due to its aggressive nature and the need for effective biomarkers for treatment monitoring. This study aimed to compare ProGRP and CEA as serological markers in the monitoring of SCLC treatment. METHODS We retrospectively analyzed data from 80 SCLC patients and 80 matched controls. ProGRP and CEA levels were measured, and their associations with clinical parameters, including tumor stage and treatment response, were assessed using Spearman's rank correlation coefficient. Multivariate logistic regression models were employed to identify independent predictors of treatment response and disease progression. RESULTS ProGRP and CEA levels were considerably higher in cases than controls, with median ProGRP levels at 198.5 pg/mL versus 48.7 pg/mL and median CEA levels at 5.2 ng/mL versus 2.9 ng/mL (both p < 0.001). ProGRP levels correlated positively with tumor stage (ρ = 0.58, p < 0.001) and negatively with treatment response (ρ = - 0.45, p = 0.001). CEA levels also showed positive correlation with tumor stage (ρ = 0.48, p = 0.002) and negative correlation with treatment response (ρ = - 0.35, p = 0.005). Multivariate analysis revealed that ProGRP was an independent predictor for treatment response (OR 1.25 per 100 pg/mL increase, p = 0.001) and disease progression (OR 1.25 per 50 pg/mL increase, p = 0.012), while CEA was a marginal predictor for treatment response (OR 0.95 per 1 ng/mL increase, p = 0.045). CONCLUSION Both ProGRP and CEA are significant serological markers in SCLC patients, with ProGRP showing a stronger correlation with tumor stage and treatment response. ProGRP may serve as a superior independent predictor of treatment response and disease progression compared to CEA. These findings support the incorporation of ProGRP in SCLC treatment monitoring protocols.
Collapse
Affiliation(s)
- Mingjie Yu
- Nuclear Medicine Department, The People's Hospital of Bozhou, Bozhou, 236800, China
| | - Ping Wang
- Clinical Laboratory, Bozhou Hospital of Traditional Chinese Medicine, Northwest of the intersection of Weiwu Avenue and North First Ring Road, Qiaocheng District, Bozhou, 236800, China.
| |
Collapse
|
2
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi MM, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A, Pandey S. TiO2-based nanocomposites for cancer diagnosis and therapy: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022; 27:7327. [PMID: 36364157 PMCID: PMC9658374 DOI: 10.3390/molecules27217327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 10/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed.
Collapse
Affiliation(s)
- Mantong Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Jiang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Liangyi Xue
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhengzheng Shi
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinya Wang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunqiong Feng
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Gidi L, Honores J, Ibarra J, Jesús Aguirre M, Arce R, Ramírez G. Electrodetermination of Gallic Acid Using Multi‐walled Carbon Nanotube Paste Electrodes and N‐Octylpyridinium Hexafluorophosphate. ELECTROANAL 2022. [DOI: 10.1002/elan.202100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leyla Gidi
- Laboratory of Materials Science Instituto de Química de Recursos Naturales Universidad de Talca 747 3460000 Talca Chile
| | - Jessica Honores
- Facultad de Química y de Farmacia Departamento de Química Inorgánica Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, Casilla 306, Correo 22 Santiago Chile
| | - José Ibarra
- Facultad de Química y de Farmacia Departamento de Química Inorgánica Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, Casilla 306, Correo 22 Santiago Chile
| | - María Jesús Aguirre
- Facultad de Química y Biología Departamento de Química de Los Materiales Universidad de Santiago de Chile USACH Av. L.B. O'Higgins 3363 Santiago Chile
| | - Roxana Arce
- Facultad de Ciencias Exactas Departamento de Ciencias Químicas Universidad Andrés Bello Av. República 275 Santiago Chile
| | - Galo Ramírez
- Facultad de Química y de Farmacia Departamento de Química Inorgánica Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, Casilla 306, Correo 22 Santiago Chile
| |
Collapse
|
6
|
Ropero-Vega JL, Redondo-Ortega JF, Galvis-Curubo YJ, Rondón-Villarreal P, Flórez-Castillo JM. A Bioinspired Peptide in TIR Protein as Recognition Molecule on Electrochemical Biosensors for the Detection of E. coli O157:H7 in an Aqueous Matrix. Molecules 2021; 26:molecules26092559. [PMID: 33924762 PMCID: PMC8124904 DOI: 10.3390/molecules26092559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the detection of pathogens such as Escherichia coli through instrumental alternatives with fast response and excellent sensitivity and selectivity are being studied. Biosensors are systems consisting of nanomaterials and biomolecules that exhibit remarkable properties such as simplicity, portable, affordable, user‑friendly, and deliverable to end‑users. For this, in this work we report for the first time, to our knowledge, the bioinformatic design of a new peptide based on TIR protein, a receptor of Intimin membrane protein which is characteristic of E. coli. This peptide (named PEPTIR‑1.0) was used as recognition element in a biosensor based on AuNPs‑modified screen‑printed electrodes for the detection of E. coli. The morphological and electrochemical characteristics of the biosensor obtained were studied. Results show that the biosensor can detect the bacteria with limits of detection and quantification of 2 and 6 CFU/mL, respectively. Moreover, the selectivity of the system is statistically significant towards the detection of the pathogen in the presence of other microorganisms such as P. aeruginosa and S. aureus. This makes this new PEPTIR‑1.0 based biosensor can be used in the rapid, sensitive, and selective detection of E. coli in aqueous matrices.
Collapse
Affiliation(s)
- Jose Luis Ropero-Vega
- Facultad de Ciencias Exactas, Naturales y Agropecuarias, Ciencias Básicas y Aplicadas Para la Sostenibilidad—CIBAS, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga C.P. 680003, Santander, Colombia; (Y.J.G.-C.); (J.M.F.-C.)
- Correspondence: (J.L.R.-V.); (J.F.R.-O.); Tel.: +57-7-6516500 (ext. 1665) (J.L.R.-V.)
| | - Joshua Felipe Redondo-Ortega
- Facultad de Ciencias Exactas, Naturales y Agropecuarias, Ciencias Básicas y Aplicadas Para la Sostenibilidad—CIBAS, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga C.P. 680003, Santander, Colombia; (Y.J.G.-C.); (J.M.F.-C.)
- Correspondence: (J.L.R.-V.); (J.F.R.-O.); Tel.: +57-7-6516500 (ext. 1665) (J.L.R.-V.)
| | - Yuli Juliana Galvis-Curubo
- Facultad de Ciencias Exactas, Naturales y Agropecuarias, Ciencias Básicas y Aplicadas Para la Sostenibilidad—CIBAS, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga C.P. 680003, Santander, Colombia; (Y.J.G.-C.); (J.M.F.-C.)
| | - Paola Rondón-Villarreal
- Facultad de Ciencias de la Salud, Grupo de Investigación en Biología Molecular y Biotecnología, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga C.P. 680003, Santander, Colombia;
| | - Johanna Marcela Flórez-Castillo
- Facultad de Ciencias Exactas, Naturales y Agropecuarias, Ciencias Básicas y Aplicadas Para la Sostenibilidad—CIBAS, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga C.P. 680003, Santander, Colombia; (Y.J.G.-C.); (J.M.F.-C.)
| |
Collapse
|
7
|
Kumar S, Kumari P, Rathee G, Rathi B. Nanomaterials for Early Cancer Diagnostics. NANOMEDICINE FOR CANCER DIAGNOSIS AND THERAPY 2021:97-114. [DOI: 10.1007/978-981-15-7564-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Jamei HR, Rezaei B, Ensafi AA. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C 60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry 2020; 138:107701. [PMID: 33254052 DOI: 10.1016/j.bioelechem.2020.107701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
In this study, an ultra-sensitive and selective Thrombin biosensor with aptamer-recognition surface is introduced based on carbon nanocomposite. To prepare the this biosensor, screen-printed carbon electrodes (SPCE) were modified with a nanocomposite made from fullerene (C60), multi-walled carbon nanotubes (MWCNTs), polyethylenimine (PEI) and polymer quantum dots (PQdot). The unique characteristics of each component of the C60/MWCNTs-PEI/PQdot nanocomposite allow for synergy between nanoparticles while polymer quantum dots resulted in characteristics such as high stability, high surface to volume ratio, high electrical conductivity, high biocompatibility, and high mechanical and chemical stability. The large number of amine groups in C60/MWCNTs-PEI/PQdot nanocomposite created more sites for better covalent immobilization of amino-linked aptamer (APT) which improved the sensitivity and stability of the aptasensor. Differential Pulse Voltammetry (DPV) method with probe solution was used as the measurment method. Binding of thrombin protein to aptamers immobilized on the transducer resulted in reduced electron transfer at the electrode/electrolyte interface which reduces the peak current (IP) in DPV. The calibration curve was drawn using the changes in the peak current (ΔIP),. The proposed aptasensor has a very low detection limit of 6 fmol L-1, and a large linear range of 50 fmol L-1 to 20 nmol L-1. Furthermore, the proposed C60/MWCNTs-PEI/PQdot/APT aptasensor has good reproducibility, great selectivity, low response time and a good stability during its storage. Finally, the application of the proposed aptasensor for measuring thrombin on human blood serum samples was investigated. This aptasensor can be useful in bioengineering and biomedicine applications as well as for clinical studies.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
9
|
Letchumanan I, Gopinath SCB, Md Arshad MK, Mohamed Saheed MS, Perumal V, Voon CH, Hashim U. Gold-Nanohybrid Biosensors for Analyzing Blood Circulating Clinical Biomacromolecules: Current Trend toward Future Remote Digital Monitoring. Crit Rev Anal Chem 2020; 52:577-592. [PMID: 32897761 DOI: 10.1080/10408347.2020.1812373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mortality level is worsening the situation worldwide thru blood diseases and greatly jeopardizes the human health with poor diagnostics. Due to the lack of successful generation of early diagnosis, the survival rate is currently lower. To overcome the present hurdle, new diagnostic methods have been choreographed for blood disease biomarkers analyses with the conjunction of ultra-small ideal gold nanohybrids. Gold-hybrids hold varieties of unique features, such as high biocompatibility, increased surface-to-volume ratio, less-toxicity, ease in electron transfer and have a greater localized surface plasmon resonance. Gold-nanocomposites can be physically hybrid on the sensor surface and functionalize with the biomolecules using appropriate chemical conjugations. Revolutionizing biosensor platform can be prominently linked for the nanocomposite applications in the current research on medical diagnosis. This review encloses the new developments in diagnosing blood biomarkers by utilizing the gold-nanohybrids. Further, the current state-of-the-art and the future envision with digital monitoring for facile telediagnosis were narrated.
Collapse
Affiliation(s)
- Iswary Letchumanan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia.,School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - M K Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia.,School of Microelectronic Engineering, Arau 02600, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chun Hong Voon
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| |
Collapse
|
10
|
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 2020; 69:349-364. [PMID: 32088362 DOI: 10.1016/j.semcancer.2020.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the leading cause of death in both men and women in the world. Lung cancer is heterogeneous in nature and diagnosis is often at an advanced stage as it develops silently in the lung and is frequently associated with high mortality rates. Despite the advances made in understanding the biology of lung cancer, progress in early diagnosis, cancer therapy modalities and considering the mechanisms of drug resistance, the prognosis and outcome still remains low for many patients. Nanotechnology is one of the fastest growing areas of research that can solve many biological problems such as cancer. A growing number of therapies based on using nanoparticles (NPs) have successfully entered the clinic to treat pain, cancer, and infectious diseases. Recent progress in nanotechnology has been encouraging and directed to developing novel nanoparticles that can be one step ahead of the cancer reducing the possibility of multi-drug resistance. Nanomedicine using NPs is continuingly impacting cancer diagnosis and treatment. Chemotherapy is often associated with limited targeting to the tumor, side effects and low solubility that leads to insufficient drug reaching the tumor. Overcoming these drawbacks of chemotherapy by equipping NPs with theranostic capability which is leading to the development of novel strategies. This review provides a synopsis of current progress in theranostic applications for lung cancer diagnosis and therapy using NPs including liposome, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes and magnetic NPs.
Collapse
Affiliation(s)
- Christopher Woodman
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Gugulethu Vundu
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, United Kingdom; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
11
|
Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens Bioelectron 2019; 141:111434. [DOI: 10.1016/j.bios.2019.111434] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|