1
|
Fan S, Chang X, Qiao Y, Zhao X, Zhao J, Zhu H, Han Y, Zhang C. Tandemly Repeated G-Quadruplex Structures in the Pseudorabies Virus Genome: Implications for Epiberberine-Based Antiviral Therapy. Int J Mol Sci 2025; 26:3764. [PMID: 40332400 PMCID: PMC12028228 DOI: 10.3390/ijms26083764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
G-quadruplex (G4) structures have emerged as critical regulatory elements in viral genomes and represent potential targets for antiviral intervention. In this study, we identified and characterized G4 structures in the unique long (UL) region of the Pseudorabies virus (PRV) genome, highlighting their role as novel antiviral targets. Bioinformatic analysis revealed two guanine-rich regions (R1 and R2) that form stable G4 structures, as confirmed by fluorescence assays, circular dichroism (CD) spectroscopy, and immunofluorescence staining. Notably, these G4 structures exhibit a tandem repeat arrangement, a previously unreported feature in the PRV genome. Epiberberine (EPI), a natural G4-stabilizing ligand, bound to and stabilized these structures, leading to the inhibition of Taq polymerase progression. Functional assays demonstrated that EPI effectively suppressed PRV replication in vitro while having no significant impact on viral entry or release. In vivo, EPI treatment significantly improved survival rates and reduced viral loads in multiple organs, including the brain, heart, lungs, and kidneys of infected mice. These findings provide new insights into the role of G4 structures in PRV replication and demonstrate that EPI exhibits potential antiviral activity by targeting G4 structures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (S.F.); (X.C.); (Y.Q.); (X.Z.); (J.Z.); (H.Z.); (Y.H.)
| |
Collapse
|
2
|
Zhang X, Xin J, Wang Z, Wu W, Liu Y, Min Z, Xin Y, Liu B, He J, Zhang X, Xu X. Structural basis of a bi-functional malonyl-CoA reductase (MCR) from the photosynthetic green non-sulfur bacterium Roseiflexus castenholzii. mBio 2023; 14:e0323322. [PMID: 37278533 PMCID: PMC10470521 DOI: 10.1128/mbio.03233-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Malonyl-CoA reductase (MCR) is a NADPH-dependent bi-functional enzyme that performs alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities in the N- and C-terminal fragments, respectively. It catalyzes the two-step reduction of malonyl-CoA to 3-hydroxypropionate (3-HP), a key reaction in the autotrophic CO2 fixation cycles of Chloroflexaceae green non-sulfur bacteria and the archaea Crenarchaeota. However, the structural basis underlying substrate selection, coordination, and the subsequent catalytic reactions of full-length MCR is largely unknown. For the first time, we here determined the structure of full-length MCR from the photosynthetic green non-sulfur bacterium Roseiflexus castenholzii (RfxMCR) at 3.35 Å resolution. Furthermore, we determined the crystal structures of the N- and C-terminal fragments bound with reaction intermediates NADP+ and malonate semialdehyde (MSA) at 2.0 Å and 2.3 Å, respectively, and elucidated the catalytic mechanisms using a combination of molecular dynamics simulations and enzymatic analyses. Full-length RfxMCR was a homodimer of two cross-interlocked subunits, each containing four tandemly arranged short-chain dehydrogenase/reductase (SDR) domains. Only the catalytic domains SDR1 and SDR3 incorporated additional secondary structures that changed with NADP+-MSA binding. The substrate, malonyl-CoA, was immobilized in the substrate-binding pocket of SDR3 through coordination with Arg1164 and Arg799 of SDR4 and the extra domain, respectively. Malonyl-CoA was successively reduced through protonation by the Tyr743-Arg746 pair in SDR3 and the catalytic triad (Thr165-Tyr178-Lys182) in SDR1 after nucleophilic attack from NADPH hydrides. IMPORTANCE The bi-functional MCR catalyzes NADPH-dependent reduction of malonyl-CoA to 3-HP, an important metabolic intermediate and platform chemical, from biomass. The individual MCR-N and MCR-C fragments, which contain the alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities, respectively, have previously been structurally investigated and reconstructed into a malonyl-CoA pathway for the biosynthetic production of 3-HP. However, no structural information for full-length MCR has been available to illustrate the catalytic mechanism of this enzyme, which greatly limits our capacity to increase the 3-HP yield of recombinant strains. Here, we report the cryo-electron microscopy structure of full-length MCR for the first time and elucidate the mechanisms underlying substrate selection, coordination, and catalysis in the bi-functional MCR. These findings provide a structural and mechanistic basis for enzyme engineering and biosynthetic applications of the 3-HP carbon fixation pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhiguo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yutong Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyong Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jun He
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xingwei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Min Z, Zhang X, Wu W, Xin Y, Liu M, Wang K, Zhang X, He Y, Fan C, Wang Z, Xu X. Crystal Structure of an Intramolecular Mesaconyl-Coenzyme A Transferase From the 3-Hydroxypropionic Acid Cycle of Roseiflexus castenholzii. Front Microbiol 2022; 13:923367. [PMID: 35711761 PMCID: PMC9196870 DOI: 10.3389/fmicb.2022.923367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Coenzyme A (CoA) transferases catalyze reversible transfer of CoA groups from CoA-thioesters to free acids, playing important roles in the metabolism of carboxylic acids in all organisms. An intramolecular CoA transferase, Mesaconyl-CoA C1-C4 CoA transferase (MCT) was identified in the autotrophic CO2 fixation pathway, 3-hydroxypropionic acid cycle of filamentous anoxygenic phototrophs (FAPs). Different from the well-known CoA transferases that catalyze CoA transfer between two distinct substrates, MCT specifically catalyzes the reversible transformation of mesaconyl-C1-CoA to mesaconyl-C4-CoA, a key reaction intermediate for carbon fixation. However, the molecular mechanism of MCT in employing one substrate is enigmatic. Here we determined the crystal structure of MCT from a chlorosome-less FAP Roseiflexus castenholzii at 2.5 Å resolution, and characterized the catalytic mechanisms through structural analyses and molecular dynamic simulations. The structure of R. castenholzii MCT consists of a Rossmann fold larger domain and a small domain that are connected by two linkers. Two MCT subunits are cross interlocked at the linker regions to form a functional dimer in solution, in which the substrate binding pockets are located at the interface of the Rossmann fold larger domain from one subunit and the small domain from the other subunit. In the simulated binding structures, both the substrate mesaconyl-C1-CoA and product mesaconyl-C4-CoA form extensive electrostatic and hydrogen bonding interactions with MCT. But some differences exist in the binding mode of these two CoA analogs, Arg314’ from the second subunit of the dimer presenting dramatic conformational changes in binding with mesaconyl-C4-CoA. Together with Arg47 and one water molecule, a strictly conserved residue Asp165 are essential for catalyzing the reversible intramolecular CoA transfer reaction, through the electrostatic and hydrogen bonding interactions with the mesaconic tail of both the substrate and product. This study revealed a previously unrecognized mechanism for the uncommon intramolecular CoA transfer reaction, which will not only broaden the knowledge on the catalytic mechanisms of CoA transferases, but also contribute to enzyme engineering or biosynthetic applications of the 3-HP cycle for synthesis of fine chemicals and important metabolites.
Collapse
Affiliation(s)
- Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Menghua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Kangle Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xingwei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yun He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- *Correspondence: Chengpeng Fan,
| | - Zhiguo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Zhiguo Wang,
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Xiaoling Xu,
| |
Collapse
|
4
|
Wickstrom L, Gallicchio E, Chen L, Kurtzman T, Deng N. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model. Phys Chem Chem Phys 2022; 24:6037-6052. [PMID: 35212338 PMCID: PMC9044818 DOI: 10.1039/d1cp05075c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the physical forces underlying receptor-ligand binding requires robust methods for analyzing the binding thermodynamics. In end-point binding free energy methods the binding free energy is naturally decomposable into physically intuitive contributions such as the solvation free energy and configurational entropy that can provide insights. Here we present a new end-point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, to estimate the absolute binding free energy. We compare EE-BQH with other treatments of configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa acids host-guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated absolute binding free energies strongly depend on the configurational entropy and solvation free energy methods used. QHIC and BQH yield the best agreements with the established potential of mean force (PMF) estimates, with R2 of ∼0.7 and mean unsigned error of ∼1.7 kcal mol-1. These results from the end-point calculations are also in similar agreement with experiments. While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the PMF results and experiments, the calculated absolute binding free energies are underestimated by ∼5 kcal mol-1. While the binding is accompanied by a significant reduction in the ligand translational/rotational entropy, the change in the torsional entropy in these host-guest systems is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational entropy because of the non-Gaussian probability distributions in the ligand rotation and a small number of torsions. The study highlights the crucial role of configurational entropy in determining binding and demonstrates the potential of using the new end-point method to provide insights in more complex protein-ligand systems.
Collapse
Affiliation(s)
- Lauren Wickstrom
- Borough of Manhattan Community College, The City University of New York, Department of Science, New York, New York, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.,PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA
| | - Lieyang Chen
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Tom Kurtzman
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York, USA.
| |
Collapse
|
5
|
Evaluating Molecular Docking Software for Small Molecule Binding to G-Quadruplex DNA. Int J Mol Sci 2021; 22:ijms221910801. [PMID: 34639142 PMCID: PMC8509811 DOI: 10.3390/ijms221910801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acid secondary structures of biological significance and have emerged as an attractive drug target. The G4 formed in the MYC promoter (MycG4) is one of the most studied small-molecule targets, and a model system for parallel structures that are prevalent in promoter DNA G4s and RNA G4s. Molecular docking has become an essential tool in structure-based drug discovery for protein targets, and is also increasingly applied to G4 DNA. However, DNA, and in particular G4, binding sites differ significantly from protein targets. Here we perform the first systematic evaluation of four commonly used docking programs (AutoDock Vina, DOCK 6, Glide, and RxDock) for G4 DNA-ligand binding pose prediction using four small molecules whose complex structures with the MycG4 have been experimentally determined in solution. The results indicate that there are considerable differences in the performance of the docking programs and that DOCK 6 with GB/SA rescoring performs better than the other programs. We found that docking accuracy is mainly limited by the scoring functions. The study shows that current docking programs should be used with caution to predict G4 DNA-small molecule binding modes.
Collapse
|
6
|
King E, Aitchison E, Li H, Luo R. Recent Developments in Free Energy Calculations for Drug Discovery. Front Mol Biosci 2021; 8:712085. [PMID: 34458321 PMCID: PMC8387144 DOI: 10.3389/fmolb.2021.712085] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
The grand challenge in structure-based drug design is achieving accurate prediction of binding free energies. Molecular dynamics (MD) simulations enable modeling of conformational changes critical to the binding process, leading to calculation of thermodynamic quantities involved in estimation of binding affinities. With recent advancements in computing capability and predictive accuracy, MD based virtual screening has progressed from the domain of theoretical attempts to real application in drug development. Approaches including the Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical methods have been broadly applied to model molecular recognition for drug discovery and lead optimization. Here we review the varied methodology of these approaches, developments enhancing simulation efficiency and reliability, remaining challenges hindering predictive performance, and applications to problems in the fields of medicine and biochemistry.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Erick Aitchison
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
- Department of Materials Science and Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
7
|
Wang Z, Li G, Tian Z, Lou X, Huang Y, Wang L, Li J, Hou T, Liu JP. Insight Derived from Molecular Dynamics Simulation into the Selectivity Mechanism Targeting c-MYC G-Quadruplex. J Phys Chem B 2020; 124:9773-9784. [DOI: 10.1021/acs.jpcb.0c05029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guo Li
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, Hainan, China
| | - Zhou Tian
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xiaoqin Lou
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yining Huang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Department of Immunology, Monash University Faculty of Medicine, Melbourne, Victoria 3004, Australia
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
8
|
Sullivan HJ, Chen B, Wu C. Molecular Dynamics Study on the Binding of an Anticancer DNA G-Quadruplex Stabilizer, CX-5461, to Human Telomeric, c-KIT1, and c-Myc G-Quadruplexes and a DNA Duplex. J Chem Inf Model 2020; 60:5203-5224. [PMID: 32820923 DOI: 10.1021/acs.jcim.0c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA G-quadruplex (G4) stabilizer, CX-5461, is in phase I/II clinical trials for advanced cancers with BRCA1/2 deficiencies. A FRET-melting temperature increase assay measured the stabilizing effects of CX-5461 to a DNA duplex (∼10 K), and three G4 forming sequences negatively implicated in the cancers upon its binding: human telomeric (∼30 K), c-KIT1 (∼27 K), and c-Myc (∼25 K). Without experimentally solved structures of these CX-5461-G4 complexes, CX-5461's interactions remain elusive. In this study, we performed a total of 73.5 μs free ligand molecular dynamics binding simulations of CX-5461 to the DNA duplex and three G4s. Three binding modes (top, bottom, and side) were identified for each system and their thermodynamic, kinetic, and structural nature were deciphered. The molecular mechanics/Poisson Boltzmann surface area binding energies of CX-5461 were calculated for the human telomeric (-28.6 kcal/mol), c-KIT1 (-23.9 kcal/mol), c-Myc (-22.0 kcal/mol) G4s, and DNA duplex (-15.0 kcal/mol) systems. These energetic differences coupled with structural differences at the 3' site explained the different melting temperatures between the G4s, while CX-5461's lack of intercalation to the duplex explained the difference between the G4s and duplex. Based on the interaction insight, CX-5461 derivatives were designed and docked, showing higher selectivity to the G4s over the duplex.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| |
Collapse
|
9
|
Cruz J, Wickstrom L, Yang D, Gallicchio E, Deng N. Combining Alchemical Transformation with a Physical Pathway to Accelerate Absolute Binding Free Energy Calculations of Charged Ligands to Enclosed Binding Sites. J Chem Theory Comput 2020; 16:2803-2813. [PMID: 32101691 DOI: 10.1021/acs.jctc.9b01119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a new approach to more accurately and efficiently compute the absolute binding free energy for receptor-ligand complexes. Currently, the double decoupling method (DDM) and the potential of mean force method (PMF) are widely used to compute the absolute binding free energy of biomolecular complexes. DDM relies on alchemically decoupling the ligand from its environments, which can be computationally challenging for large ligands and charged ligands because of the large magnitude of the decoupling free energies involved. In contrast, the PMF method uses a physical pathway to directly transfer the ligand from solution to the receptor binding pocket and thus avoids some of the aforementioned problems in DDM. However, the PMF method has its own drawbacks: because of its reliance on a ligand binding/unbinding pathway that is free of steric obstructions from the receptor atoms, the method has difficulty treating ligands with buried atoms. To overcome the limitation in the standard PMF approach and enable buried ligands to be treated, here we develop a new method called AlchemPMF in which steric obstructions along the physical pathway for binding are alchemically removed. We have tested the new approach on two important drug targets involving charged ligands. One is HIV-1 integrase bound to an allosteric inhibitor; the other is the human telomeric DNA G-quadruplex in complex with a natural product protoberberine buried in the binding pocket. For both systems, the new approach leads to more reliable estimates of absolute binding free energies with smaller error bars and closer agreements with experiments compared with those obtained from the existing methods, demonstrating the effectiveness of the new method in overcoming the hysteresis often encountered in PMF binding free energy calculations of such systems. The new approach could also be used to improve the sampling of water equilibration and resolvation of the binding pocket as the ligand is extracted.
Collapse
Affiliation(s)
- Jeffrey Cruz
- Department of Chemistry and Physical Sciences, Pace University, New York, New York 10038, United States
| | - Lauren Wickstrom
- Department of Science, Borough of Manhattan Community College, The City University of New York, New York, New York 10007, United States
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, Graduate Center, City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York 10038, United States
| |
Collapse
|
10
|
Mulholland K, Sullivan HJ, Garner J, Cai J, Chen B, Wu C. Three-Dimensional Structure of RNA Monomeric G-Quadruplex Containing ALS and FTD Related G4C2 Repeat and Its Binding with TMPyP4 Probed by Homology Modeling based on Experimental Constraints and Molecular Dynamics Simulations. ACS Chem Neurosci 2020; 11:57-75. [PMID: 31800202 DOI: 10.1021/acschemneuro.9b00572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The G-quadruplex-forming hexanucleotide repeat expansion (HRE), d(G4C2)n, within the human C9orf72 gene is the root cause for familial amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). A recent study has shown that TMPyP4 has good potential to work as a RNA G-quadruplex binder in treating ALS and FTD. Although the high-resolution structure of the monomeric DNA antiparallel G-quadruplex form of the monomeric hexanucleotide repeat was recently solved, the RNA parallel G-quadruplex structure and its complex with TMPyP4 are not available yet. In this study, we first constructed the homology model for the parallel monomeric RNA G-quadruplex of r(G4C2)3G4 based on experimental constraints and the parallel monomeric G-quadruplex DNA crystal structure. Although the G-tetra core of the homology model was stable observed in 15 μs molecular dynamics (MD) simulations, we observed that the loops adopt additional conformations besides the initial crystal conformation, where TMPyP4 binding was found to reduce the loop fluctuation of the RNA monomeric G-quadruplex. Next, we probed the elusive binding behavior of TMPyP4 to the RNA monomeric G-quadruplex. Encouragingly, the binding modes observed are similar to the modes observed in two experimental complexes of a parallel DNA G-quadruplex with TMPyP4. We also constructed a Markov state model to provide insights into the binding pathways. Together, the findings from our study may assist future development of G-quadruplex-specific ligands in the treatment of neurodegenerative diseases like ALS and FTD.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joseph Garner
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun Cai
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
11
|
Wu G, Chen L, Liu W, Yang D. Molecular Recognition of the Hybrid-Type G-Quadruplexes in Human Telomeres. Molecules 2019; 24:molecules24081578. [PMID: 31013622 PMCID: PMC6514847 DOI: 10.3390/molecules24081578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022] Open
Abstract
G-quadruplex (G4) DNA secondary structures formed in human telomeres have been shown to inhibit cancer-specific telomerase and alternative lengthening of telomere (ALT) pathways. Thus, human telomeric G-quadruplexes are considered attractive targets for anticancer drugs. Human telomeric G-quadruplexes are structurally polymorphic and predominantly form two hybrid-type G-quadruplexes, namely hybrid-1 and hybrid-2, under physiologically relevant solution conditions. To date, only a handful solution structures are available for drug complexes of human telomeric G-quadruplexes. In this review, we will describe two recent solution structural studies from our labs. We use NMR spectroscopy to elucidate the solution structure of a 1:1 complex between a small molecule epiberberine and the hybrid-2 telomeric G-quadruplex, and the structures of 1:1 and 4:2 complexes between a small molecule Pt-tripod and the hybrid-1 telomeric G-quadruplex. Structural information of small molecule complexes can provide important information for understanding small molecule recognition of human telomeric G-quadruplexes and for structure-based rational drug design targeting human telomeric G-quadruplexes.
Collapse
Affiliation(s)
- Guanhui Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA.
| | - Luying Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA.
| | - Wenting Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA.
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA.
- Purdue Center for Cancer Research, 201 S University St, West Lafayette, IN 47906, USA.
- Purdue Institute for Drug Discovery, 720 Clinic Dr, West Lafayette, IN 47907, USA.
| |
Collapse
|