1
|
Ma C, Li X, Chen X, He X, Zhang ST, Jiang YQ, Yu B. Photocatalytic Umpolung Strategy for the Synthesis of α-Amino Phosphine Oxides and Deuterated Derivatives. Org Lett 2023; 25:8016-8021. [PMID: 37903293 DOI: 10.1021/acs.orglett.3c03193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Direct, economical, and green synthesis of deuterated α-amino phosphine oxides remains an elusive challenge in synthetic chemistry. Herein, we report a visible-light-driven umpolung strategy for synthesizing deuterated α-amino phosphine oxides from isocyanide using 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene as the photocatalyst and D2O as the deuterium source. Moreover, the streamlined and sustainable methodology can be applied in the modification of amino acids, natural products, and drugs. The strong antiproliferative activity of the desired products indicates that the method could provide a novel privileged scaffold for antitumor drug development.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaofeng Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiya Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shu-Ting Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu-Qin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Martínez-Campos Z, Elizondo-Zertuche M, Hernández-Núñez E, Hernández-Fernández E, Robledo-Leal E, López-Cortina ST. Microwave-Assisted Synthesis of Aminophosphonic Derivatives and Their Antifungal Evaluation against Lomentospora prolificans. Molecules 2023; 28:molecules28103995. [PMID: 37241736 DOI: 10.3390/molecules28103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Lomentospora prolificans is a pathogenic and multidrug-resistant fungus that can infect both immunocompetent and immunocompromised patients, with mortality rates up to 87%. The World Health Organization (WHO) included this fungal species in its first list of 19 priority fungal pathogens, which focused on fungal pathogens that can cause invasive acute and subacute systemic fungal infections. Therefore, there is a growing interest in finding new therapeutic alternatives. In this work, the synthesis of twelve α-aminophosphonates by the microwave-assisted Kabachnik-Fields reaction and twelve α-aminophosphonic acids by a monohydrolysis reaction is reported. All compounds were evaluated by the agar diffusion method as a preliminary screening in comparison with voriconazole, showing inhibition halos for compounds 7, 11, 13, 22 and 27. The five active compounds in the preliminary tests were evaluated against five strains of L. prolificans following protocol M38-A2 from CLSI. The results showed that these compounds exhibit antifungal activity in the concentration range of 900->900 μg/mL. Cytotoxicity against healthy COS-7 cells was also evaluated by the MTT assay, and it was shown that compound 22 was the least cytotoxic, with a viability of 67.91%, comparable to the viability exhibited by voriconazole (68.55%). Docking studies showed that the possible mechanism of action of the active compounds could be through the inhibition of the enzyme lanosterol-14-alpha-demethylase in an allosteric hydrophobic cavity.
Collapse
Affiliation(s)
- Zuleyma Martínez-Campos
- Laboratorio de Química Industrial, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Mariana Elizondo-Zertuche
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño, Col. Mitras Centro, Monterrey 64460, Nuevo León, Mexico
| | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida 97310, Yucatán, Mexico
| | - Eugenio Hernández-Fernández
- Laboratorio de Química Industrial, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Efrén Robledo-Leal
- Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Susana T López-Cortina
- Laboratorio de Química Industrial, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| |
Collapse
|
3
|
Varga PR, Keglevich G. Synthesis of α-Aminophosphonates and Related Derivatives; the Last Decade of the Kabachnik-Fields Reaction. Molecules 2021; 26:2511. [PMID: 33923090 PMCID: PMC8123346 DOI: 10.3390/molecules26092511] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 11/21/2022] Open
Abstract
The Kabachnik-Fields reaction, comprising the condensation of an amine, oxo compound and a P-reagent (generally a >P(O)H species or trialkyl phosphite), still attracts interest due to the challenging synthetic procedures and the potential biological activity of the resulting α-aminophosphonic derivatives. Following the success of the first part (Molecules 2012, 17, 12821), here we summarize the synthetic developments in this field accumulated in the last decade. The procedures compiled include catalytic accomplishments as well as catalyst-free and/or solvent-free "greener" protocols. The products embrace α-aminophosphonates, α-aminophosphinates, and α-aminophosphine oxides along with different bis derivatives from the double phospha-Mannich approach. The newer developments of the aza-Pudovik reactions are also included.
Collapse
Affiliation(s)
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| |
Collapse
|
4
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Supramolecular Diversity of Oxabicyclo[2.2.2]octenes Formed between Substituted 2H-Pyran-2-ones and Vinyl-Moiety-Containing Dienophiles. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Diels–Alder reactions, 2H-pyran-2-ones as dienes can yield a large variety of cycloadducts with up to four contiguous carbon stereogenic centers. Some of the potentially most useful, however difficult to prepare due to their low thermal stability, are the primary CO2-containing oxabicyclo[2.2.2]octenes, which could be formed as eight distinctive isomers (two sets of regioisomers, each of these composed of four different stereoisomers). A high-pressure synthesis of such products was recently described in a few cases where vinyl-moiety-containing dienophiles were used as synthetic equivalents of acetylene. However, structures of the primary products have been so far only rarely investigated in detail. Herein, we present seven novel single-crystal X-ray diffraction structures of such cycloadducts of both stereoisomeric forms, i.e., endo and exo. Additionally, we present a single-crystal structure of a rare case of a cyclohexadiene system stable at room temperature, obtained as a secondary product upon the retro-hetero-Diels–Alder elimination of CO2 under thermal conditions (microwave irradiation), during this elimination the symmetry is increased and out of eight initially possible isomers of the reactant, this number in the product is decreased to four. In oxabicyclo[2.2.2]octene compounds, centrosymmetric hydrogen bonding was found to be the predominant motif and diverse supramolecular patterns were observed due to rich variety of C–H⋯O and C–H⋯π interactions.
Collapse
|
6
|
Kunde SP, Kanade KG, Karale BK, Akolkar HN, Arbuj SS, Randhavane PV, Shinde ST, Shaikh MH, Kulkarni AK. Nanostructured N doped TiO 2 efficient stable catalyst for Kabachnik-Fields reaction under microwave irradiation. RSC Adv 2020; 10:26997-27005. [PMID: 35515785 PMCID: PMC9055502 DOI: 10.1039/d0ra04533k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 01/20/2023] Open
Abstract
Herein, we report nitrogen-doped TiO2 (N-TiO2) solid-acid nanocatalysts with heterogeneous structure employed for the solvent-free synthesis of α-aminophosphonates through Kabachnik–Fields reaction. N-TiO2 were synthesized by direct amination using triethylamine as a source of nitrogen at low temperature and optimized by varying the volume ratios of TiCl4, methanol, water, and triethylamine, under identical conditions. An X-ray diffraction (XRD) study showed the formation of a rutile phase and the crystalline size is 10 nm. The nanostructural features of N-TiO2 were examined by HR-TEM analysis, which showed they had rod-like morphology with a diameter of ∼7 to 10 nm. Diffuse reflectance spectra show the extended absorbance in the visible region with a narrowing in the band gap of 2.85 eV, and the high resolution XPS spectrum of the N 1s region confirmed successful doping of N in the TiO2 lattice. More significantly, we found that as-synthesized N-TiO2 showed significantly higher catalytic activity than commercially available TiO2 for the synthesis of a novel series of α-amino phosphonates via Kabachnik–Fields reaction under microwave irradiation conditions. The improved catalytic activity is due to the presence of strong and Bronsted acid sites on a porous nanorod surface. This work signifies N-TiO2 is an efficient stable catalyst for the synthesis of α-aminophosphonate derivatives. Herein, we report nitrogen-doped TiO2 (N-TiO2) solid-acid nanocatalysts with heterogeneous structure employed for the solvent-free synthesis of α-aminophosphonates through Kabachnik–Fields reaction.![]()
Collapse
Affiliation(s)
- Sachin P Kunde
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India .,PG and Research Centre, Mahatma Phule Arts, Science and Commerce College Panvel 410 206 India
| | - Kaluram G Kanade
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India .,PG and Research Centre, Yashavantrao Chavan Institute of Science Satara 415 001 India
| | - Bhausaheb K Karale
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Hemant N Akolkar
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Sudhir S Arbuj
- Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India Panchavati, Off Pashan Road Pune-411 008 India
| | | | - Santosh T Shinde
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Mubarak H Shaikh
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Aniruddha K Kulkarni
- Dr. John Barnabas School for Biological Studies, Department of Chemistry, Ahmednagar College Ahmednagar-414 001 India
| |
Collapse
|
7
|
Kamanna K, Khatavi SY. Microwave-accelerated Carbon-carbon and Carbon-heteroatom Bond Formation via Multi-component Reactions: A Brief Overview. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213346107666200218124147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry
for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in
which organic reactants react with domino in a single-step process. This has become an alternative
platform for the organic chemists, because of their simple operation, less purification methods, no side
product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon-
carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively
used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon-
carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation,
Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O,
and C-S bond are also found more important and present in various heterocyclic compounds, which
are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery
and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis
for sustainable production of diverse and structurally complex organic molecules. Reactions that
required hours to run completely in a conventional method can now be carried out within minutes.
Thus, the application of microwave (MW) radiation in organic synthesis has become more promising
considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted
organic synthesis (MAOS) has successfully been employed in various material syntheses,
such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis,
polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in
carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples
are discussed in this review.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide, and Medicinal Chemistry Research Laboratory, Rani Channamma University, P-B, NH-4, Belagavi-591156, Karnataka, India
| | - Santosh Y. Khatavi
- Department of Chemistry, Peptide, and Medicinal Chemistry Research Laboratory, Rani Channamma University, P-B, NH-4, Belagavi-591156, Karnataka, India
| |
Collapse
|
8
|
Shilpa T, Ann Harry N, Ujwaldev SM, Anilkumar G. An Overview of Microwave‐Assisted Kabachnik‐Fields Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202000693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Shilpa
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | - Nissy Ann Harry
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| |
Collapse
|
9
|
Abstract
Multicomponent Reactions appear to be ideal for any form of synthesis, because of their numerous advantages in terms of sustainability and selectivity in building up complex molecular architectures, with high molecular diversity. This Special Issue collects seven contributions which expand our knowledge about Multicomponent Reactions, providing a good overview about innovative reactivities and applications.
Collapse
Affiliation(s)
- Cristina Cimarelli
- School of Sciences and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy.
| |
Collapse
|