1
|
Raheema Sharafudeen R, Abraham A. Hepatoprotective potential of coconut inflorescence sap against paracetamol induced toxicity in hep G2 cell lines. Food Chem Toxicol 2024; 193:114946. [PMID: 39181230 DOI: 10.1016/j.fct.2024.114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Coconut Inflorescence Sap (CIS) is the sweet, oyster-white colored, non-fermented juice obtained from the immature inflorescence of the Coconut tree. Acetaminophen (N-acetyl-p-aminophenol, or paracetamol) is one of the most frequently used drugs worldwide as an antipyretic or analgesic. HepG2 cell lines were used as an experimental model for studying in vitro hepatotoxicity induced by Paracetamol. The present study aims to identify biologically active compounds of CIS using LCMS analysis and to elucidate the ameliorative potential of CIS in alleviating paracetamol-induced hepatotoxicity. LC-MS analysis revealed the presence of 17 bioactive compounds. HepG2 cells were pretreated with Paracetamol (20 mM) for inducing toxicity, and Silymarin at a concentration of 50 μg/ml was used as a standard drug. The morphological analysis and MTT assay showed effective recovery from toxicity in cells treated with CIS in a dose-dependent manner. CIS at 25 μg/ml potentially showed the highest percentage of inhibitory activity against the toxicity induced by paracetamol. The treatment with paracetamol significantly increased the indicators of liver toxicity - LDH, SGOT, SGPT, and Glut.S Transferase in the media.CIS administration also increased the total protein levels, SOD, and Catalase activity. The morphological analysis, MTT assay, cytocompatibility studies, determination of enzymatic activities, etc., confirms the significant hepatoprotective efficacy of CIS.
Collapse
Affiliation(s)
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Abdelrazek FN, Shalaby RA, Fahim SA, Essam RM, Anis SE, Attia YM, Abd El Malak NS. Novel fast dissolving freeze dried sublingual baicalin tablets for enhanced hepatoprotective effect: in-vitro characterization, cell viability, and in-vivo evaluation. Pharm Dev Technol 2024; 29:371-382. [PMID: 38613468 DOI: 10.1080/10837450.2024.2341243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.
Collapse
Affiliation(s)
- Farida N Abdelrazek
- Pharmaceutics Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rodayna A Shalaby
- Pharmaceutics Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Sally A Fahim
- Biochemistry Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Reham M Essam
- Biology department, School of Pharmacy, Newgiza University, Giza, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shady E Anis
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nevine S Abd El Malak
- Pharmaceutics Department, School of Pharmacy, Newgiza University, Giza, Egypt
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Messelmani T, Le Goff A, Soncin F, Souguir Z, Merlier F, Maubon N, Legallais C, Leclerc E, Jellali R. Coculture model of a liver sinusoidal endothelial cell barrier and HepG2/C3a spheroids-on-chip in an advanced fluidic platform. J Biosci Bioeng 2024; 137:64-75. [PMID: 37973520 DOI: 10.1016/j.jbiosc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
The liver is one of the main organs involved in the metabolism of xenobiotics and a key organ in toxicity studies. Prior to accessing the hepatocytes, xenobiotics pass through the hepatic sinusoid formed by liver sinusoidal endothelial cells (LSECs). The LSECs barrier regulates the kinetics and concentrations of the xenobiotics before their metabolic processing by the hepatocytes. To mimic this physiological situation, we developed an in vitro model reproducing an LSECs barrier in coculture with a hepatocyte biochip, using a fluidic platform. This technology made dynamic coculture and tissue crosstalk possible. SK-HEP-1 and HepG2/C3a cells were used as LSECs and as hepatocyte models, respectively. We confirmed the LSECs phenotype by measuring PECAM-1 and stabilin-2 expression levels and the barrier's permeability/transport properties with various molecules. The tightness of the SK-HEP-1 barrier was enhanced in the dynamic coculture. The morphology, albumin secretion, and gene expression levels of markers of HepG2/C3a were not modified by coculture with the LSECs barrier. Using acetaminophen, a well-known hepatotoxic drug, to study tissue crosstalk, there was a reduction in the expression levels of the LSECs markers stabilin-2 and PECAM-1, and a modification of those of CLEC4M and KDR. No HepG2/C3a toxicity was observed. The metabolisation of acetaminophen by HepG2/C3a monocultures and cocultures was confirmed. Although primary cells are required to propose a fully relevant model, the present approach highlights the potential of our system for investigating xenobiotic metabolism and toxicity.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, 43 Avenue le Corbusier, 59800 Lille, France; CNRS, IRL2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Franck Merlier
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu, Cedex CS 60319, 60203 Compiègne, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Eric Leclerc
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; CNRS, IRL2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
4
|
Li X, Lao R, Lei J, Chen Y, Zhou Q, Wang T, Tong Y. Natural Products for Acetaminophen-Induced Acute Liver Injury: A Review. Molecules 2023; 28:7901. [PMID: 38067630 PMCID: PMC10708418 DOI: 10.3390/molecules28237901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The liver plays a vital role in metabolism, synthesis, and detoxification, but it is susceptible to damage from various factors such as viral infections, drug reactions, excessive alcohol consumption, and autoimmune diseases. This susceptibility is particularly problematic for patients requiring medication, as drug-induced liver injury often leads to underestimation, misdiagnosis, and difficulties in treatment. Acetaminophen (APAP) is a widely used and safe drug in therapeutic doses but can cause liver toxicity when taken in excessive amounts. This study aimed to investigate the hepatotoxicity of APAP and explore potential treatment strategies using a mouse model of APAP-induced liver injury. The study involved the evaluation of various natural products for their therapeutic potential. The findings revealed that natural products demonstrated promising hepatoprotective effects, potentially alleviating liver damage and improving liver function through various mechanisms such as oxidative stress and inflammation, which cause changes in signaling pathways. These results underscore the importance of exploring novel treatment options for drug-induced liver injury, suggesting that further research in this area could lead to the development of effective preventive and therapeutic interventions, ultimately benefiting patients with liver injury caused by medicine.
Collapse
Affiliation(s)
- Xiaoyangzi Li
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Ruyang Lao
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Jiawei Lei
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yuting Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116000, China;
| | - Qi Zhou
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| | - Ting Wang
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yingpeng Tong
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| |
Collapse
|
5
|
Liu Y, Yin X, Zhao H, Shu W, Xin F, Wang H, Luo X, Gong N, Xue X, Pang Q, Xing M, Tian Y. Near-infrared-emitting upconverting BiVO 4 nanoprobes for in vivo fluorescent imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120811. [PMID: 35016063 DOI: 10.1016/j.saa.2021.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) emitting BiVO4:Yb3+,Tm3+ nanoparticles are synthesized by a new solvothermal strategy using solvents of oleic acid and methanol. The obtained BiVO4:Yb3+,Tm3+ samples show an average particle size of ≈164 nm and exhibit an asymmetry monoclinic crystal structure of BiVO4. At NIR excitation of 980 nm, the BiVO4:Yb3+,Tm3+ sample exhibits a nearly single NIR emission at ≈796 nm with extremely weak blue emissions from Tm3+ ions. These high-energy visible emissions are absorbed by the semiconducting host of BiVO4 that possesses a bandgap of ≈2.2 eV. Therefore, the NIR excitation to a single intense NIR emission fluorescent BiVO4 materials could be a potential ideal probe for deep-tissue high-resolution bioimaging. To validate the ability of BiVO4 materials for bio-applications, we conduct the cytotoxicity experiments. The results show that the cytotoxicity of HeLa cells is negligible at a concentration of 0.2 mg/ml of BiVO4:Yb3+,Tm3+ , and the cell viability approaches 90% at a high dosage of 0.5 mg/ml. The Daphnia magna and Zebrafish treated with nanoparticles (0.5 mg/ml) display bright NIR emission without any background, indicating the excellent in vivo fluorescent imaging capacity of BiVO4:Yb3+,Tm3+ nanoparticles. Our findings offer an environment-friendly strategy to synthesize BiVO4 UCL nanophosphors and provide a promising new class of fluorescent probes for biological applications.
Collapse
Affiliation(s)
- Yuwei Liu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Xiumei Yin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hengzhi Zhao
- Beijing Key Laboratory of Photo-electronic/Electro-Photonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Fangyun Xin
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China.
| | - Hong Wang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Xixian Luo
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China; Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ning Gong
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaohong Xue
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Qiang Pang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China.
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China.
| |
Collapse
|
6
|
Malik S, Odeyemi S, Pereira GC, Freitas LMD, Abdul-Hamid H, Atabaki N, Makhzoum A, Almeida EBD, Dewar J, Abiri R. New insights into the biotechnology and therapeutic potential of Lippia alba (Mill.) N.E.Br. ex P. Wilson. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1936667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sonia Malik
- Faculty of Science and Technology, Laboratoire De Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), University of Orléans, Orleans, France
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, Brazil
| | - Samuel Odeyemi
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | - Glaucia C. Pereira
- Biotechnology, Icelandic Institute for Intelligent Machines, Reykjavik, Iceland
- Department of Computer Sciences, Polytechnic Institute, University Autonoma of Madrid, Madrid, Spain
- Department of Bioengineering, Imperial College London, London, UK
| | - Luciano Mamede de Freitas
- Faculty of Science and Technology, Laboratoire De Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), University of Orléans, Orleans, France
- Laboratory of Botanical Studies, Department of Biology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang, Malaysia
| | - Narges Atabaki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Eduardo Bezerra de Almeida
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, Brazil
- Laboratory of Botanical Studies, Department of Biology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - John Dewar
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | - Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
7
|
Odeyemi SW, Ajayi EO, Otunola GA, Afolayan AJ. Silver nanoparticles biosynthesis by Elaeodendron croceum stem bark and leaves extracts, their anti-bacterial and cytotoxicity activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1791182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Samuel Wale Odeyemi
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| | - Emmanuel O. Ajayi
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| | - Gloria A. Otunola
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
8
|
Alginate-Derived Elicitors Enhance β-Glucan Content and Antioxidant Activities in Culinary and Medicinal Mushroom, Sparassis latifolia. J Fungi (Basel) 2020; 6:jof6020092. [PMID: 32630366 PMCID: PMC7344979 DOI: 10.3390/jof6020092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the elicitation effects of alginate oligosaccharides extracted from brown algae (Sargassum species) on β-glucan production in cauliflower mushroom (Sparassis latifolia). Sodium alginate was refined from Sargassum fulvellum, S. fusiforme, and S. horneri, and characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), resulting mannuronic acid to guluronic acid (M/G) rationes from 0.64 to 1.38. Three oligosaccharide fractions, ethanol fraction (EF), solid fraction (SF), and liquid fraction (LF), were prepared by acid hydrolysis and analyzed by Fourier transform infrared (FT-IR) spectra and high-performance anion-exchange chromatography with a pulsed amperometric detector (HPAEC-PAD). The samples of S. fusiforme resulted in the highest hydrolysate in SF and the lowest in LF, which was consistent with its highest M/G ratio. The SF of S. fusiforme and LF of S. horneri were chosen for elicitation on S. latifolia, yielding the highest β-glucan contents of 56.01 ± 3.45% and 59.74 ± 4.49% in the stalk, respectively. Total polyphenol content (TPC) and antioxidant activities (2,2’-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging and Superoxide dismutase (SOD)-like activity) of aqueous extracts of S. latifolia were greatly stimulated by alginate elicitation. These results demonstrate that alginate oligosaccharides extracted from brown algae may be useful as an elicitor to enhance the nutritional value of mushrooms.
Collapse
|
9
|
Wei X, Wang H, Sun X, Huang X, Xu W, Liang Y, Liu L, Mo S, Lin X, Lin J. 4-hydroxy-2(3H)-benzoxazolone alleviates acetaminophen-induced hepatic injury by inhibiting NF-κB and activating Nrf2/HO-1 signaling pathways. Am J Transl Res 2020; 12:2169-2180. [PMID: 32509209 PMCID: PMC7269977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study is to evaluate the protective effect of 4-hydroxy-2(3H)-benzoxazolone from Acanthus ilicifolius (HBAI) on acute liver injury induced by acetaminophen in mice and its mechanism. Mice were continuously treated with HBAI (200, 100, 50 mg/kg) once a day for 10 days. After that, the mice were fasted for 8 hours, followed by intraperitoneal injection of acetaminophen (300 mg/kg). The results showed that HBAI pretreatment significantly reduced acetaminophen-induced liver tissue congestion, hepatocyte apoptosis and necrosis, and inflammatory cell infiltration. HBAI could effectively reduce the levels of serum alanine aminotransferase, aspartate aminotransferase, total bilirubin, reactive oxygen species and malondialdehyde. Interestingly, the activities of liver catalase, superoxide dismutase, glutathione and glutathione reductase were enhanced by HBAI pretreatment. Moreover, HBAI pretreatment alleviated acetaminophen-induced hepatocyte apoptosis by regulating the expression of Bcl-2 family proteins and the mitochondrial function. Further study showed that HBAI pretreatment effectively promoted the expression of Nrf2 and its signal downstream HO-1, NQO1, GCLC, GCLM, and MGST-1, suggesting the activation of the Nrf2/HO-1 signaling pathway. Meanwhile, HBAI attenuated the phosphorylation of NF-κBp65, IKKα/β, and IκBα, as well as the expression of NF-κBp50, which indicated that HBAI blocked the signal transduction of NF-κB pathway. In conclusion, HBAI protects against acetaminophen-induced acute liver injury by inhibiting the NF-κB and activating Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Xiugui Wei
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Hongyuan Wang
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Xuemei Sun
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Xiukun Huang
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Wanpeng Xu
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Yingqin Liang
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Lin Liu
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Siyan Mo
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Xing Lin
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| | - Jun Lin
- Department of Pharmacology, Guangxi Medical University Nanning 530021, China
| |
Collapse
|
10
|
Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines 2020; 8:biomedicines8020039. [PMID: 32093399 PMCID: PMC7167868 DOI: 10.3390/biomedicines8020039] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Numerous studies have demonstrated the role of the microbiota in supporting the physiological functions, owing to its metabolomic component. The presence of biocomponents generally leads to the correction of the microbial pattern correlated with the reduction of oxidative pressure. This study aims to present the main processes that correlate the bioavailability and bioactivity of some functional components through the action of the human microbiota. The use of probiotics and prebiotics is an innovative manner involving alternatives that increase the bioavailability of certain natural or metabolic components has been proposed. Probiotic strains (Saccharomyces cerevisiae or Lactobacillus (L.) plantarum) may represent an intermediary for increasing the antioxidant bioactivity, and they may be administered in the form of a biomass enriched with functional compounds, such as phenolic acids. The limiting effect of gastrointestinal transit is, in several cases, the key to the biopharmaceutical value of new products (or supplements). The identification of newer ways of formulating supplements also involves the compatibility of different types of products, the testing of bioaccessibility, and the elimination of biotransformations.
Collapse
|
11
|
In Vitro Antidiabetic Activity Affecting Glucose Uptake in HepG2 Cells Following Their Exposure to Extracts of Lauridia tetragona (L.f.) R.H. Archer. Processes (Basel) 2019. [DOI: 10.3390/pr8010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The incidence of diabetes is on the rise and one of the medically active plants used for the treatment of diabetes in South Africa is Lauridia tetragona. The aim of this study is to investigate the antidiabetic property of the polyphenolics (PP) compounds isolated from the methanolic extract of Lauridia tetragona. The α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPPIV), lipase inhibitory activities, and glucose uptake in HepG2 were investigated. The methanolic extract fractions of L. tetragona yielded six fractions (PP1–PP6) all of which showed weak inhibition against DPPIV and lipase compared to the standards. However, PP4 and PP6 showed the best inhibition against α-amylase (IC50 of 359.3 ± 2.11 and 416.82 ± 2.58 μg/mL, respectively) and α-glucosidase (IC50 of 95.93 ± 2.34 and 104.49 ± 2.21 μg/mL, respectively) and only PP4 (173.6%) resulted in enhanced glucose uptake in HepG2 cells compared to berberine (129.89%) and metformin (187.16%) used as positive controls. The previous investigation on PP4 and PP6 showed the presence of polyphenolics such as ferulic acid, coumaric acid, and caffeic acid. The results of this study suggest that L. tetragona could be suitable as an antidiabetic agent and justifies the folkloric use of the plant to treat diabetes.
Collapse
|