1
|
Beć KB, Grabska J, Hawranek JP, Huck CW. Carbonyl stretching band in amides as Lorentz oscillator. Insights into anharmonicity and local environment in the liquid phase from NIR and MIR spectra of N-methylformamide and di-N,N-methylformamide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124954. [PMID: 39180970 DOI: 10.1016/j.saa.2024.124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
We investigated the anharmonicity and intermolecular interactions of N-methylformamide (NMF) and di-N,N-methylformamide (DMF) in the neat liquid phase with particular interest in the amide bands. The vibrational spectra, complex refractive index, and complex electric permittivity were determined in in the mid- (MIR) and near-infrared (NIR) regions (11,500-560 cm-1; 870-17857 nm). Dispersion analysis was based on the Classical Damped Harmonic Oscillator (CDHO) and simultaneous modelling of the real and imaginary components of the spectra. This data delivered insights into the vibrational energy dissipation and self-association in liquid amides. Identification of the MIR and NIR bands was based on anharmonic GVPT2//B3LYP/6-311++G(d,p) calculations. DMF and NMF follow distinct self-association, evidenced in the MIR fingerprint by the two components of the νCO, the analog of the Amide I band. These conclusions are supported by the structural information derived from the NIR spectra. Furthermore, the contribution of overtones and combination bands in the MIR spectra of amides was examined. The conclusions on molecular interactions and structural dynamics of NMF and DMF contribute to a deeper understanding of the effects of changes in the local environment of the amide group.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria.
| | | | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Li C, Zhu X, Xu M. A Theoretical Investigation into the Oligomer Structure of Carbon Dots Formed from Small-Molecule Precursors. Molecules 2024; 29:2920. [PMID: 38930988 PMCID: PMC11206910 DOI: 10.3390/molecules29122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
In-depth insights into the oligomers of carbon dots (CDs) prepared from small-molecule precursors are important in the study of the carbonization mechanism of CDs and for our knowledge of their complex structure. Herein, citric acid (CA) and ethylenediamine (EDA) were used as small-molecule precursors to prepare CDs in an aqueous solution. The structure of oligomers acquired from CA and EDA in different molar ratios and their formation process were first studied using density functional theory, including the dispersion correction (DFT-D3) method. The results showed that the energy barrier of dimer cyclization was higher than that of its linear polymerization, but the free energy of the cyclized product was much lower than that of its reactant, and IPCA (5-oxo-1,-2,3,5-tetrahydroimidazo [1,2-a]pyridine-7-carboxylic acid) could therefore be obtained under certain conditions. The oligomers obtained from different molar ratios of EDA and CA were molecular clusters formed by short polyamide chains through intermolecular forces; with the exception of when the molar ratio of EDA to CA was 0.5, excessive CA did not undergo an amidation reaction but rather attained molecular clusters directly through intermolecular forces. These oligomers exhibited significant differences in their surface functional groups, which would affect the carbonization process and the surface structure of CDs.
Collapse
Affiliation(s)
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (C.L.); (M.X.)
| | | |
Collapse
|
3
|
Afahanam LE, Louis H, Benjamin I, Gber TE, Ikot IJ, Manicum ALE. Heteroatom (B, N, P, and S)-Doped Cyclodextrin as a Hydroxyurea (HU) Drug Nanocarrier: A Computational Approach. ACS OMEGA 2023; 8:9861-9872. [PMID: 36969463 PMCID: PMC10035006 DOI: 10.1021/acsomega.2c06630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Theoretical examination of hydroxyurea adsorption capabilities toward the cyclodextrin surface for proper drug delivery systems was carried out utilizing DFT simulations. The study aims to assess the efficacy of doped cyclodextrin (doped with boron, nitrogen, phosphorus, and sulfur atoms) in increasing its stability and efficiency in intermolecular interactions, hence facilitating optimal drug delivery. The adsorption energies were found to follow a decreasing order of B@ACD-HU>N@ACD-HU>P@ACD-HU>S@ACD-HU with energies of -0.046, -0.0326, -0.015, and 0.944 kcal/mol, respectively. The S@ACD-HU complex, unlike previous systems, had a physical adsorption energy. The N@ACD-HU and B@ACD-HU complexes had the shortest bond lengths of 1.42 Å (N122-C15) and 1.54 Å (B126-C15), respectively. The HOMO and LUMO values were also high in identical systems, -6.367 and -2.918 eV (B@ACD-HU) and -6.278 and -1.736 eV (N@ACD-HU), respectively, confirming no chemical interaction. The N@ACD-HU has the largest energy gap of 4.54 eV. For the QTAIM analysis and plots, the maximum electron density and ellipticity index were detected in B@ACD-HU, 0.600 au (H70-N129) and 0.8685 au (H70-N129), respectively, but N@ACD-HU exhibited a high Laplacian energy of 0.7524 a.u (H133-N122). The fragments' TDOS, OPDOS, and PDOS exhibited a strong bond interaction of greater than 1, and they had different Fermi levels, with the highest value of -8.16 eV in the N@ACD-HU complex. Finally, the NCI analysis revealed that the complexes were noncovalent. According to the literature, the van der Waals form of interactions is used in the intermolecular forces of cyclodextrin cavities. The B@ACD-HU and N@ACD-HU systems were more greenish in color with no spatial interaction. These two systems have outperformed other complexes in intermolecular interactions, resulting in more efficient drug delivery. They had the highest negative adsorption energies, the shortest bond length, the highest HOMO/LUMO energies, the highest energy gap, the highest stabilization energy, the strongest bonding effect, the highest electron density, the highest ellipticity index, and a strong van der Waals interaction that binds the drug and the surface together.
Collapse
Affiliation(s)
- Lucy E. Afahanam
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Terkumbur E. Gber
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Immaculata J. Ikot
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Amanda-Lee E. Manicum
- Department
of Chemistry, Tshwane University of Technology, Pretoria 0183, South Africa
| |
Collapse
|
4
|
Beć KB, Grabska J, Huck CW. In silico NIR spectroscopy - A review. Molecular fingerprint, interpretation of calibration models, understanding of matrix effects and instrumental difference. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121438. [PMID: 35667136 DOI: 10.1016/j.saa.2022.121438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Quantum mechanical calculations are routinely used as a major support in mid-infrared (MIR) and Raman spectroscopy. In contrast, practical limitations for long time formed a barrier to developing a similar synergy between near-infrared (NIR) spectroscopy and computational chemistry. Recent advances in theoretical methods suitable for calculation of NIR spectra opened the pathway to modeling NIR spectra of various molecules. Accurate theoretical reproduction of NIR spectra of molecules reaching the size of long-chain fatty acids was accomplished so far. In silico NIR spectroscopy, where the spectra are calculated ab initio, provides substantial improvement in our understanding of the overtones and combination bands that overlap in staggering numbers and create complex lineshape typical for NIR spectra. This improves the comprehension of the spectral information enabling access to rich and detail molecular footprint, essential for fundamental research and useful in routine analysis by NIR spectroscopy and chemometrics. This review article summarizes the most recent accomplishments in the emerging field with examples of simulated NIR spectra of molecules reaching long-chain fatty acids and polymers. In addition to detailed NIR band assignments and new physical insights, simulated spectra enable innovative support in applications. Understanding of the difference in the performance observed between miniaturized NIR spectrometers and chemical interpretation of the chemometric models are noteworthy here. These new elements integrated into NIR spectroscopy framework enable a knowledge-based design of the analysis with comprehension of the processed chemical information.
Collapse
Affiliation(s)
- Krzysztof B Beć
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Justyna Grabska
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Christian W Huck
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Beć KB, Grabska J, Huck CW. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022; 11:foods11101465. [PMID: 35627034 PMCID: PMC9140213 DOI: 10.3390/foods11101465] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
The ongoing miniaturization of spectrometers creates a perfect synergy with the common advantages of near-infrared (NIR) spectroscopy, which together provide particularly significant benefits in the field of food analysis. The combination of portability and direct onsite application with high throughput and a noninvasive way of analysis is a decisive advantage in the food industry, which features a diverse production and supply chain. A miniaturized NIR analytical framework is readily applicable to combat various food safety risks, where compromised quality may result from an accidental or intentional (i.e., food fraud) origin. In this review, the characteristics of miniaturized NIR sensors are discussed in comparison to benchtop laboratory spectrometers regarding their performance, applicability, and optimization of methodology. Miniaturized NIR spectrometers remarkably increase the flexibility of analysis; however, various factors affect the performance of these devices in different analytical scenarios. Currently, it is a focused research direction to perform systematic evaluation studies of the accuracy and reliability of various miniaturized spectrometers that are based on different technologies; e.g., Fourier transform (FT)-NIR, micro-optoelectro-mechanical system (MOEMS)-based Hadamard mask, or linear variable filter (LVF) coupled with an array detector, among others. Progressing technology has been accompanied by innovative data-analysis methods integrated into the package of a micro-NIR analytical framework to improve its accuracy, reliability, and applicability. Advanced calibration methods (e.g., artificial neural networks (ANN) and nonlinear regression) directly improve the performance of miniaturized instruments in challenging analyses, and balance the accuracy of these instruments toward laboratory spectrometers. The quantum-mechanical simulation of NIR spectra reveals the wavenumber regions where the best-correlated spectral information resides and unveils the interactions of the target analyte with the surrounding matrix, ultimately enhancing the information gathered from the NIR spectra. A data-fusion framework offers a combination of spectral information from sensors that operate in different wavelength regions and enables parallelization of spectral pretreatments. This set of methods enables the intelligent design of future NIR analyses using miniaturized instruments, which is critically important for samples with a complex matrix typical of food raw material and shelf products.
Collapse
|
6
|
Mayr S, Strasser S, Kirchler CG, Meischl F, Stuppner S, Beć KB, Grabska J, Sturm S, Stuppner H, Popp MA, Bonn GK, Huck CW. Quantification of Silymarin in Silybi mariani fructus: Challenging the Analytical Performance of Benchtop vs. Handheld NIR Spectrometers on Whole Seeds. PLANTA MEDICA 2022; 88:20-32. [PMID: 33434938 DOI: 10.1055/a-1326-2497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The content of the flavonolignan mixture silymarin and its individual components (silichristin, silidianin, silibinin A, silibinin B, isosilibinin A, and isosilibinin B) in whole and milled milk thistle seeds (Silybi mariani fructus) was analyzed with near-infrared spectroscopy. The analytical performance of one benchtop and two handheld near-infrared spectrometers was compared. Reference analysis was performed with HPLC following a Soxhlet extraction (European Pharmacopoeia) and a more resource-efficient ultrasonic extraction. The reliability of near-infrared spectral analysis determined through partial least squares regression models constructed independently for the spectral datasets obtained by the three spectrometers was as follows. The benchtop device NIRFlex N-500 performed the best both for milled and whole seeds with a root mean square error of CV between 0.01 and 0.17%. The handheld spectrometer MicroNIR 2200 as well as the microPHAZIR provided a similar performance (root mean square error of CV between 0.01 and 0.18% and between 0.01 and 0.23%, respectively). We carried out quantum chemical simulation of near-infrared spectra of silichristin, silidianin, silibinin, and isosilibinin for interpretation of the results of spectral analysis. This provided understanding of the absorption regions meaningful for the calibration. Further, it helped to better separate how the chemical and physical properties of the samples affect the analysis. While the study demonstrated that milling of samples slightly improves the performance, it was deemed to be critical only for the analysis carried out with the microPHAZIR. This study evidenced that rapid and nondestructive quantification of silymarin and individual flavonolignans is possible with miniaturized near-infrared spectroscopy in whole milk thistle seeds.
Collapse
Affiliation(s)
- Sophia Mayr
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Simon Strasser
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Christian G Kirchler
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Florian Meischl
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Stefan Stuppner
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
- ADSI - Austrian Drug Screening Institute, Innsbruck, Austria
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Sonja Sturm
- Institute of Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Michael A Popp
- Michael Popp Research Institute of New Phyto Entities, University of Innsbruck, Innsbruck, Austria
| | - Günther K Bonn
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
- ADSI - Austrian Drug Screening Institute, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Beć KB, Grabska J, Badzoka J, Huck CW. Spectra-structure correlations in NIR region of polymers from quantum chemical calculations. The cases of aromatic ring, C=O, C≡N and C-Cl functionalities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120085. [PMID: 34174679 PMCID: PMC7616891 DOI: 10.1016/j.saa.2021.120085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) spectroscopy is a valued analytical tool in various applications involving polymers. However, complex nature of NIR spectra imposes difficulties in their direct interpretation. Here, anharmonic quantum chemical calculations are used to simulate NIR spectra of nine polymers; acrylonitrile butadiene styrene (ABS), ethylene-vinyl acetate (EVAC), polycarbonate (PC), polyethylene terephthalate (PET), polylactide or polylactic acid (PLA), polymethylmethacrylate (PMMA), polyoxymethylene (POM), polystyrene (PS) and polyvinylchloride (PVC). The generalized spectra-structure correlations are derived for these systems with focus given to the manifestation in NIR spectra of aromatic ring, C=O, C≡N and C-Cl functionalities. It is concluded that the nature of NIR polymer bands is only moderately sensitive to the remote chemical neighborhood. The majority of NIR absorption of polymers originates from binary combination bands, while the first overtones are meaningful only in ca. 6200-5500 cm-1 region. The contribution of the overtone bands is relatively higher for the polymers bearing aromatic rings because of higher intensity of C-H stretching overtones. Highly characteristic combination bands of the modes localized in aromatic ring (ring deformation and CH stretching) are relatively independent on the remaining structure of the polymer. The combination bands originating from C=O group are more sensitive to the chemical neighborhood in near proximity, forming a useful fingerprint for a specific polymer. In contrast, the vibrational bands of C≡N functionality are far less useful in NIR region than in infrared (IR) region. With aid of the calculated absorption bands, structural specificity of NIR spectroscopy of polymers can be markedly improved.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Beć KB, Grabska J, Huck CW, Mazurek S, Czarnecki MA. Anharmonicity and Spectra-Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K 3). Molecules 2021; 26:6779. [PMID: 34833871 PMCID: PMC8620535 DOI: 10.3390/molecules26226779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K3) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600-2600 cm-1. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000-3600 and 2800-1800 cm-1 ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, 6020 Innsbruck, Austria; (J.G.); (C.W.H.)
| | - Justyna Grabska
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, 6020 Innsbruck, Austria; (J.G.); (C.W.H.)
| | - Christian W. Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, 6020 Innsbruck, Austria; (J.G.); (C.W.H.)
| | - Sylwester Mazurek
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland;
| | | |
Collapse
|
9
|
Dixit Y, Al-Sarayreh M, Craigie C, Reis M. A global calibration model for prediction of intramuscular fat and pH in red meat using hyperspectral imaging. Meat Sci 2021; 181:108405. [DOI: 10.1016/j.meatsci.2020.108405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
|
10
|
Grabska J, Beć KB, Ozaki Y, Huck CW. Anharmonic DFT Study of Near-Infrared Spectra of Caffeine: Vibrational Analysis of the Second Overtones and Ternary Combinations. Molecules 2021; 26:molecules26175212. [PMID: 34500645 PMCID: PMC8433751 DOI: 10.3390/molecules26175212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Anharmonic quantum chemical calculations were employed to simulate and interpret a near-infrared (NIR) spectrum of caffeine. First and second overtones, as well as binary and ternary combination bands, were obtained, accurately reproducing the lineshape of the experimental spectrum in the region of 10,000–4000 cm−1 (1000–2500 nm). The calculations enabled performing a detailed analysis of NIR spectra of caffeine, including weak bands due to the second overtones and ternary combinations. A highly convoluted nature of NIR spectrum of caffeine was unveiled, with numerous overlapping bands found beneath the observed spectral lineshape. To properly reflect that intrinsic complexity, the band assignments were provided in the form of heat maps presenting the contributions to the NIR spectrum from various kinds of vibrational transitions. These contributions were also quantitatively assessed in terms of the integral intensities. It was found that the combination bands provide the decisively dominant contributions to the NIR spectrum of caffeine. The first overtones gain significant importance between 6500–5500 cm−1, while the second overtones are meaningful in the higher wavenumber regions, particularly in the 10,000–7000 cm−1 region. The obtained detailed band assignments enabled deep interpretation of the absorption regions of caffeine identified in the literature as meaningful for analytical applications of NIR spectroscopy focused on quantitative analysis of caffeine content in drugs and natural products.
Collapse
Affiliation(s)
- Justyna Grabska
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
- Correspondence:
| | - Krzysztof B. Beć
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan;
- Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute 480-1192, Aichi, Japan
| | - Christian W. Huck
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
| |
Collapse
|
11
|
Vibrational intensities and anharmonicity in MIR, NIR and Raman spectra of liquid CHCl3, CDCl3, CHBr3 and CDBr3: Spectroscopic and theoretical study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Identification of overtone and combination bands of organic solvents by thermal lens spectroscopy with tunable Ti:sapphire laser excitation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Mayr S, Beć KB, Grabska J, Schneckenreiter E, Huck CW. Near-infrared spectroscopy in quality control of Piper nigrum: A comparison of performance of benchtop and handheld spectrometers. Talanta 2021; 223:121809. [DOI: 10.1016/j.talanta.2020.121809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
|
14
|
Yao F, Gong N, Fang W, Men Z. Spectroscopic evidence of a particular intermolecular interaction in iodomethane–ethanol mixtures: the cooperative effect of halogen bonding, hydrogen bonding, and the solvent effect. Phys Chem Chem Phys 2020; 22:5702-5710. [DOI: 10.1039/c9cp05886a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The particular intermolecular interaction of an iodomethane–ethanol mixture is revealed by NIR, Raman, DFT calculation, and 2D correlation analysis.
Collapse
Affiliation(s)
- Fei Yao
- School of Science, Changchun University of Science and Technology
- Changchun
- China
| | - Nan Gong
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory
- College of Physics
- Jilin University
- Changchun 130012
- China
| | - Wenhui Fang
- School of Science, Changchun University of Science and Technology
- Changchun
- China
| | - Zhiwei Men
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory
- College of Physics
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
15
|
Advances in Near-Infrared Spectroscopy and Related Computational Methods. Molecules 2019; 24:molecules24234370. [PMID: 31795360 PMCID: PMC6930588 DOI: 10.3390/molecules24234370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
|
16
|
Katsu S, Ito S, Yoshimura N, Takayanagi M. Variation in Near-Infrared Spectra of Water Containing Polyhydric Alcohol. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Beć KB, Grabska J, Ozaki Y, Czarnecki MA, Huck CW. Simulated NIR spectra as sensitive markers of the structure and interactions in nucleobases. Sci Rep 2019; 9:17398. [PMID: 31758033 PMCID: PMC6874539 DOI: 10.1038/s41598-019-53827-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Near-infrared (near-IR; NIR) spectroscopy is continuously advancing in biophysical and biochemical fields of investigation. For instance, recent progresses in NIR hyperspectral imaging of biological systems may be noted. However, interpretation of NIR bands for biological samples is difficult and creates a considerable barrier in exploring the full potential of NIR spectroscopy in bioscience. For this reason, we carried out a systematic study of NIR spectra of adenine, cytosine, guanine, and thymine in polycrystalline state. Interpretation of NIR spectra of these nucleobases was supported by anharmonic vibrational analysis using Deperturbed Vibrational Second-Order Perturbation Theory (DVPT2). A number of molecular models of nucleobases was applied to study the effect of the inter-molecular interactions on the NIR spectra. The accuracy of simulated NIR spectra appears to depend on the intra-layer interactions; in contrast, the inter-layer interactions are less influential. The best results were achieved by combining the simulated spectra of monomers and dimers. It is of particular note that in-plane deformation bands are far more populated than out-of-plane ones and the importance of ring modes is relatively small. This trend is in contrast to that observed in mid-IR region. As shown, the local, short-range chemical neighborhood of nucleobase molecules influence their NIR spectra more considerably. This suggests that NIR spectra are more sensitive probe of the nucleobase pairing than mid-IR ones. The obtained results allow, for the first time, to construct a frequency correlation table for NIR spectra of purines and pyrimidines.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Mirosław A Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Christan W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| |
Collapse
|