1
|
Anisimov AA, Ananyev IV. Electron density-based protocol to recover the interacting quantum atoms components of intermolecular binding energy. J Chem Phys 2023; 159:124113. [PMID: 38127385 DOI: 10.1063/5.0167874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
A new approach for obtaining interacting quantum atoms-defined components of binding energy of intermolecular interactions, which bypasses the use of standard six-dimensional integrals and two-particle reduced density matrix (2-RDM) reconstruction, is proposed. To examine this approach, three datasets calculated within the density functional theory framework using the def2-TZVP basis have been explored. The first two, containing 53 weakly bound bimolecular associates and 13 molecular clusters taken from the crystal, were used in protocol refinement, and the third one containing other 20 bimolecular and three cluster systems served as a validation reference. In addition, to verify the performance of the proposed approach on an exact 2-RDM, calculations within the coupled cluster formalism were performed for part of the first set systems using the cc-pVTZ basis set. The process of optimization of the proposed parametric model is considered, and the role of various energy contributions in the formation of non-covalent interactions is discussed with regard to the obtained trends.
Collapse
Affiliation(s)
- Aleksei A Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, GSP-1, Moscow 119334, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Ivan V Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect 31, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Brzeski J. On the influence of pnictogen bonding on acidity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Formation of C60-SnI4 Adducts. Insights of the role of σ-hole and Tetrel-bonding in the Strength and Interaction Nature from DFT calculations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Alonso de la Peña M, Merzoud L, Lamine W, Tuel A, Chermette H, Christ L. Robust pyrrole-Schiff base Zinc complexes as novel catalysts for the selective cycloaddition of CO2 to epoxides. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Guevara-Vela JM, Francisco E, Rocha-Rinza T, Martín Pendás Á. Interacting Quantum Atoms-A Review. Molecules 2020; 25:E4028. [PMID: 32899346 PMCID: PMC7504790 DOI: 10.3390/molecules25174028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this review is threefold. On the one hand, we intend it to serve as a gentle introduction to the Interacting Quantum Atoms (IQA) methodology for those unfamiliar with it. Second, we expect it to act as an up-to-date reference of recent developments related to IQA. Finally, we want it to highlight a non-exhaustive, yet representative set of showcase examples about how to use IQA to shed light in different chemical problems. To accomplish this, we start by providing a brief context to justify the development of IQA as a real space alternative to other existent energy partition schemes of the non-relativistic energy of molecules. We then introduce a self-contained algebraic derivation of the methodological IQA ecosystem as well as an overview of how these formulations vary with the level of theory employed to obtain the molecular wavefunction upon which the IQA procedure relies. Finally, we review the several applications of IQA as examined by different research groups worldwide to investigate a wide variety of chemical problems.
Collapse
Affiliation(s)
- José Manuel Guevara-Vela
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., Mexico City 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Evelio Francisco
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006 Oviedo, Spain;
| | - Tomás Rocha-Rinza
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., Mexico City 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006 Oviedo, Spain;
| |
Collapse
|
6
|
Roeleveld JJ, Lekanne Deprez SJ, Verhoofstad A, Frontera A, van der Vlugt JI, Mooibroek TJ. Engineering Crystals Using sp 3 -C Centred Tetrel Bonding Interactions. Chemistry 2020; 26:10126-10132. [PMID: 32557861 PMCID: PMC7496358 DOI: 10.1002/chem.202002613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Indexed: 11/06/2022]
Abstract
1,1,2,2-Tetracyanocyclopropane derivatives 1 and 2 were designed and synthesized to probe the utility of sp3 -C centred tetrel bonding interactions in crystal engineering. The crystal packing of 1 and 2 and their 1,4-dioxane cocrystals is dominated by sp3 -C(CN)2 ⋅⋅⋅O interactions, has significant C⋅⋅⋅O van der Waals overlap (≤0.266 Å) and DFT calculations indicate interaction energies of up to -11.0 kcal mol-1 . A cocrystal of 2 with 1,4-thioxane reveals that the cyclopropane synthon prefers interacting with O over S. Computational analyses revealed that the electropositive C2 (CN)4 pocket in 1 and 2 can be seen as a strongly directional 'tetrel-bond donor', similar to halogen bond or hydrogen bond donors. This disclosure is expected to have implications for the utility of such 'tetrel bond donors' in molecular disciplines such as crystal engineering, supramolecular chemistry, molecular recognition and medicinal chemistry.
Collapse
Affiliation(s)
- Julius J. Roeleveld
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Siebe J. Lekanne Deprez
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Abraham Verhoofstad
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palmade Mallorca (BalearesSpain
| | - Jarl Ivar van der Vlugt
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
- Institute of ChemistryCarl von Ossietzky University OldenburgCarl-von-Ossietzky-Straße 9–1126219OldenburgGermany
| | - Tiddo Jonathan Mooibroek
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
7
|
Castor-Villegas VM, Guevara-Vela JM, Vallejo Narváez WE, Martín Pendás Á, Rocha-Rinza T, Fernández-Alarcón A. On the strength of hydrogen bonding within water clusters on the coordination limit. J Comput Chem 2020; 41:2266-2277. [PMID: 32761858 DOI: 10.1002/jcc.26391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18, 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih ). The strongest HBs within H2 O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2 O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2 O clusters.
Collapse
Affiliation(s)
- Víctor Manuel Castor-Villegas
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico
| | - José Manuel Guevara-Vela
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico
| | - Wilmer E Vallejo Narváez
- Institute of Materials Research, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry, University of Oviedo, Oviedo, Spain
| | - Tomás Rocha-Rinza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico
| | - Alberto Fernández-Alarcón
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico.,Universidad Iberoamericana, Prolongacion Paseo de Reforma 880, Mexico City, Mexico
| |
Collapse
|
8
|
Casals‐Sainz JL, Francisco E, Martín Pendás Á. The Activation Strain Model in the Light of Real Space Energy Partitions. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José Luis Casals‐Sainz
- Departamento de Química Física y Analítica Facultad de Química Universidad de Oviedo 33006 Oviedo Spain
| | - Evelio Francisco
- Departamento de Química Física y Analítica Facultad de Química Universidad de Oviedo 33006 Oviedo Spain
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica Facultad de Química Universidad de Oviedo 33006 Oviedo Spain
| |
Collapse
|
9
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
10
|
Scheiner S, Michalczyk M, Zierkiewicz W. Coordination of anions by noncovalently bonded σ-hole ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|