1
|
Jia F, Wang B, Ma H, Bai C, Zhang Y. Research progress on extraction, separation, structure, and biological activities of polysaccharides from jujube fruit ( Ziziphus jujuba Mill.): a review. Front Chem 2025; 13:1581947. [PMID: 40308264 PMCID: PMC12041218 DOI: 10.3389/fchem.2025.1581947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Jujube (Ziziphus Jujuba Mill.) is an excellent medicinal and edible plant owing to its high nutritional and health-promoting properties. As an important bioactive component, Z. Jujuba polysaccharides have aroused wide attention due to their various pharmacological activities, including anti-inflammatory, immunomodulatory, anti-oxidant, anti-tumor, anti-viral, regulating gut microbiota, hepatoprotective effects and prebiotic activity, and so on. This review highlights the advancements in the extraction methods, structural characteristics, structural elucidation, and functional analysis of polysaccharides derived from Jujube fruits over the past decade, aiming to provide valuable insights for future development and commercialization of Jujube fruits polysaccharides.
Collapse
Affiliation(s)
- Feilong Jia
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bo Wang
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Hui Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Changcai Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Shi L, He Q, Li J, Liu Y, Cao Y, Liu Y, Sun C, Pan Y, Li X, Zhao X. Polysaccharides in fruits: Biological activities, structures, and structure-activity relationships and influencing factors-A review. Food Chem 2024; 451:139408. [PMID: 38735097 DOI: 10.1016/j.foodchem.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.
Collapse
Affiliation(s)
- Liting Shi
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yunlin Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Chongde Sun
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Chen X, Wang M, Wang Z, Liu X, Cao W, Zhang N, Qi Y, Cheng S, Huang W, Liu Z. Theabrownins in dark tea form complexes with tea polysaccharide conjugates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5799-5806. [PMID: 38445688 DOI: 10.1002/jsfa.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Theabrownins (TBs) are one of most important quality components in dark tea, but have not been produced industrially. In this study, the aqueous extract was obtained from Pu-erh ripe tea, one kind of dark tea. Caffeine, theaflavin, catechin and saponin were removed by trichloromethane, ethyl acetate and n-butanol in turn to obtain a TB isolate. The TB isolate was subjected to column chromatography using a macroporous resin HPD-750 and eluted with a gradient of 0-700 g kg-1 ethanol aqueous solution. Four fractions were obtained, and named as TBs-FC1, TBs-FC2, TBs-FC3 and TBs-FC4. RESULTS These four fractions contained polysaccharides and no small molecules such as catechins, caffeine and theaflavins as well as average molecular weights of 123.000 kDa, 23.380 kDa, 89.870 kDa and 106.600 kDa. It was revealed that they were complexes of TBs and tea polysaccharide conjugates (TPCs). Ultraviolet-visible (UV-visible) and infrared (IR) spectra showed the properties of TBs and TPCs. Their zeta potentials ranged from -13.40 mV to -38.80 mV in aqueous solutions at pH 3.0-9.0. CONCLUSION This study reveals that TBs do not exist in free state but in combined state in dark tea, which provide the theoretical basis for the industrialization of TBs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Mengdie Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Zhiyuan Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiuling Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Wendan Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yonggang Qi
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Shuiyuang Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wei Huang
- Food and Cosmetics Testing Research Center (Innovation Development Service platform), Hubei Institute for Drug Control, Wuhan, China
| | - Zhong Liu
- Technical research center, Hubei August Flower Food Co. Ltd, Xianning, China
| |
Collapse
|
4
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
5
|
Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Extraction, purification, structure characteristics, biological activities and pharmaceutical application of Bupleuri Radix Polysaccharide: A review. Int J Biol Macromol 2023; 237:124146. [PMID: 36965565 DOI: 10.1016/j.ijbiomac.2023.124146] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.
Collapse
Affiliation(s)
- Xinyue Yu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Zhuang Miao
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Lizhen Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
6
|
Ji X, Zhang S, Jin X, Yin C, Zhang Y, Guo X, Lin X. Systematic Comparison of Structural Characterization of Polysaccharides from Ziziphus Jujuba cv. Muzao. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020562. [PMID: 36677620 PMCID: PMC9866945 DOI: 10.3390/molecules28020562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
To investigate the structural information differences of Ziziphus Jujuba cv. Muzao polysaccharides, ten samples were successfully extracted from aqueous and alkaline solutions, prepared via DEAE-Sepharose Fast Flow through different eluents and Sephacryl S-300 columns, and systematically analyzed. Their characteristics were studied and then compared using chemical testing, high-performance gel permeation chromatography (HPGPC), gas chromatography (GC), methylation analysis, and NMR spectroscopy. The data achieved demonstrated that different jujube polysaccharide fractions possessed different structural characteristics, and most of them belonged to pectic polysaccharides. Overall, the structural information difference of jujube polysaccharides was preliminarily illuminated, which could not only promote the potential application of Z. Jujuba cv. Muzao polysaccharides but also provide an effective way to analyze the structures of polysaccharides from other genera jujube fruit.
Collapse
Affiliation(s)
- Xiaolong Ji
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shuli Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Chuanxue Yin
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yang Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xudan Guo
- Hebei Higher Education Institute Applied Technology Research Center on TCM Development and Industrialization, Hebei TCM Formula Preparation Technology Innovation Center, Basic Medical College, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Correspondence: (X.G.); (X.L.)
| | - Ximeng Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (X.G.); (X.L.)
| |
Collapse
|
7
|
Liu F, Chen H, Qin L, Al-Haimi AANM, Xu J, Zhou W, Zhu S, Wang Z. Effect and characterization of polysaccharides extracted from Chlorella sp. by hot-water and alkali extraction methods. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Golovchenko V, Popov S, Smirnov V, Khlopin V, Vityazev F, Naranmandakh S, Dmitrenok AS, Shashkov AS. Polysaccharides of Salsola passerina: Extraction, Structural Characterization and Antioxidant Activity. Int J Mol Sci 2022; 23:13175. [PMID: 36361966 PMCID: PMC9657462 DOI: 10.3390/ijms232113175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2023] Open
Abstract
The above-ground part of the Salsola passerine was found to contain ~13% (w/w) of polysaccharides extractable with water and aqueous solutions of ammonium oxalate and sodium carbonate. The fractions extracted with aqueous sodium carbonate solutions had the highest yield. The polysaccharides of majority fractions are characterized by similar monosaccharide composition; namely, galacturonic acid and arabinose residues are the principal components of their carbohydrate chains. The present study focused on the determination of antioxidant activity of the extracted polysaccharide fractions and elucidation of the structure of polysaccharides using nuclear magnetic resonance (NMR) spectroscopy. Homogalacturonan (HG), consisting of 1,4-linked residues of α-D-galactopyranosyluronic acid (GalpA), rhamnogalacturonan-I (RG-I), which contains a diglycosyl repeating unit with a strictly alternating sequence of 1,4-linked D-GalpA and 1,2-linked L-rhamnopyranose (Rhap) residues in the backbone, and arabinan, were identified as the structural units of the obtained polysaccharides. HMBC spectra showed that arabinan consisted of alternating regions formed by 3,5-substituted and 1,5-linked arabinofuranose residues, but there was no alternation of these residues in the arabinan structure. Polysaccharide fractions scavenged the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 0.2-1.8 mg/mL. The correlation analysis showed that the DPPH scavenging activity of polysaccharide fractions was associated with the content of phenolic compounds (PCs).
Collapse
Affiliation(s)
- Victoria Golovchenko
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Vasily Smirnov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Victor Khlopin
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Zhang W, He J, Hu Y, Lu J, Zhao J, Li P. Chemical Structure and Immune Activation of a Glucan From Rhizoma Acori Tatarinowii. Front Nutr 2022; 9:942241. [PMID: 35845784 PMCID: PMC9277461 DOI: 10.3389/fnut.2022.942241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Rhizoma Acori Tatarinowii is a traditional Chinese herb used to treat depression and coronary heart disease. Studies on its active components mainly focus on small molecular compounds such as asarone and other essential oil components, while the large molecular active components such as polysaccharides are ignored. In this study, we aimed to study the chemical structure and immune activation of polysaccharides from Rhizoma Acori Tatarinowii. In this study, a polysaccharide (RATAPW) was isolated and purified by DEAE-52 cellulose and Sephadex G-100 column chromatography from alkali extraction polysaccharide of Rhizoma Acori Tatarinowii. The average molecular weight of RATAPW was 2.51 × 104 Da, and the total carbohydrate contents of RATAPW were 98.23 ± 0.29%. The monosaccharide composition, methylation, and nuclear magnetic resonance (NMR) analysis results displayed that the polysaccharide was α-1,4-glucan with short α-1,6 branches. Immunofluorescence assay and inhibitor neutralization assay indicated that RATAPW could promote the TNF-α production of RAW264.7 macrophage through the nuclear factor kappa B (NF-κB) molecular signaling pathway. Treatment with 200 μg/ml of RATAPW enhanced a 38.77% rise in the proliferation rate of spleen lymphocytes. RATAPW also enhances ConA-induced T cells and lipopolysaccharide (LPS)-induced B cell proliferation in a dose-dependent effect. Our study lays a foundation for the discovery of natural polysaccharide immune modulators or functional food from Rhizoma Acori Tatarinowii.
Collapse
|
10
|
Wu CL, Xu LL, Peng J, Zhang DH. Al-MPS Obstructs EMT in Breast Cancer by Inhibiting Lipid Metabolism via miR-215-5p/SREBP1. Endocrinology 2022; 163:6562775. [PMID: 35366327 DOI: 10.1210/endocr/bqac040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/19/2022]
Abstract
Alkali-extractable mycelial polysaccharide (Al-MPS) is a natural macromolecular polymer that has shown anti-hyperlipidemic and antitumor abilities. This study investigates the mechanism by which Al-MPS inhibits lipid metabolism and epithelial-mesenchymal transition (EMT) in breast cancer (BC). BC cells (MCF-7 and MDA-MB-231) were transfected and/or treated with Al-MPS. CCK-8, Transwell, and scratch assays were used to evaluate the tumorigenic behaviors of BC cells. The expression levels of SREBP1, E-cadherin, N-cadherin, Snail, vimentin, FASN, ACLY, and ACECS1 in BC cells were detected by Western blotting. Dual-luciferase reporter and RNA pull-down assays were performed to verify the binding between miR-215-5p and SREBP1 mRNA. Nude mice were injected with MDA-MB-231 cells and treated with Al-MPS. The changes in tumor volume and protein expression were monitored. miR-215-5p was downregulated and SREBP1 was upregulated in BC. Al-MPS increased miR-215-5p expression and inhibited SREBP1 expression, lipid metabolism, and EMT in BC. Inhibition of miR-215-5p or overexpression of SREBP1 promoted the tumorigenic behaviors of BC cells by stimulating lipid metabolism and counteracted the antitumor effect of Al-MPS. SREBP1 was a downstream target of miR-215-5p. In conclusion, Al-MPS inhibits lipid metabolism and EMT in BC via the miR-215-5p/SREBP1 axis. This study supports the application of polysaccharides in cancer treatment and the molecules regulated by Al-MPS may be used as biomarkers or therapeutic targets for BC.
Collapse
Affiliation(s)
- Chenlu L Wu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lili L Xu
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Peng
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Danhua H Zhang
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Sun Y, Wang F, Liu Y, An Y, Chang D, Wang J, Xia F, Liu N, Chen X, Cao Y. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct 2022; 13:806-824. [PMID: 34985061 DOI: 10.1039/d1fo02944d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the purpose is to compare the effect of water extraction and alkali-assisted extraction on the structural characteristics and immunomodulatory activity of polysaccharides from Fuzhuan brick tea (FBTPs). The results indicated that water-extracted FBTPs (W-FBTPs) and alkali-extracted FBTPs (A-FBTPs) had similar molecular weights but different monosaccharide compositions, of which A-FBTPs had a higher yield and uronic acid groups corresponding to galacturonic acid (GalA). Moreover, A-FBTPs had stronger ability to promote phagocytic capacity, acid phosphatase activity and nitric oxide (NO) secretion in macrophages in vitro. In the in vivo study, A-FBTPs exhibited a promising effect to adjust the immune imbalance by enhancing the body features, antioxidant activities, immune response and intestinal mucosal barrier in cytoxan (CTX)-induced immunosuppressive mice. Besides, A-FBTP supplementation effectively improved CTX-induced gut microbiota dysbiosis, including promoting the abundance of beneficial bacteria (e.g., Lactobacillus) and short chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospiraceae, Prevotellaceae and Ruminococcaceae), along with reducing the growth of potentially pathogenic microbes (e.g., Desulfovibrionaceae and Helicobacter). These findings suggested that alkaline extraction might be a promising way to obtain high-quality acidic polysaccharides from Fuzhuan brick tea (FBT), and A-FBTPs could be developed as novel potential prebiotics and immunomodulators for further application in food formulations.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fan Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuye An
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Dawei Chang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Jiankang Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fei Xia
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ning Liu
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
12
|
Zhu Y, Yuen M, Li W, Yuen H, Wang M, Smith D, Peng Q. Composition analysis and antioxidant activity evaluation of a high purity oligomeric procyanidin prepared from sea buckthorn by a green method. Curr Res Food Sci 2021; 4:840-851. [PMID: 34877544 PMCID: PMC8633577 DOI: 10.1016/j.crfs.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Procyanidin is an important polyphenol for its health-promoting properties, however, the study of procyanidin in sea buckthorn was limited. In this paper, sea buckthorn procyanidin (SBP) was obtained through a green isolation and enrichment technique with an extraction rate and purity of 9.1% and 91.5%. The structure of SBP was analyzed using Ultraviolet–visible spectroscopy (UV–vis), Fourier-transform infrared spectroscopy (FT-IR), and liquid chromatography-mass spectrometry (LC-MS/MS). The results show that SBP is an oligomeric procyanidin, mainly composed of (−)-epicatechin gallate, procyanidin B, (+)-gallocatechin-(+)-catechin, and (+)-gallocatechin dimer. SBP showed superior scavenging capacity on free radicals. Furthermore, the cleaning rate of the ABTS radical was 4.8 times higher than vitamin C at the same concentration. Moreover, SBP combined with vitamin C presented potent synergistic antioxidants with combined index values below 0.3 with concentration rates from 5:5 to 2:8. SBP also provided significant protection against oxidative stress caused by hydrogen peroxide (H2O2) on RAW264.7 cells. These findings prove the potential of SBP as a natural antioxidant in food additives and support the in-depth development of sea buckthorn resources. A green method for the extraction of procyanidin was proposed. An oligomeric procyanidin in sea buckthorn was identified for the first time. SBP combined with VC exerted strong synergistic antioxidant. SBP provided protection of macrophages against oxidative damage.
Collapse
Affiliation(s)
- Yulian Zhu
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Michael Yuen
- Puredia Limited, No.12, Jing'er Road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, China
| | - Wenxia Li
- Puredia Limited, No.12, Jing'er Road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, China
| | - Hywel Yuen
- Puredia Limited, No.12, Jing'er Road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China
| | - Deandrae Smith
- Department of Food Science and Technology, University of Nebraska, Lincoln Nebraska, USA, 68504
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China
- Corresponding author. Postal address: College of Food Science and Engineering, Northwest A & F University, 712100, Yangling, PR China.
| |
Collapse
|
13
|
Popov S, Smirnov V, Kvashninova E, Khlopin V, Vityazev F, Golovchenko V. Isolation, Chemical Characterization and Antioxidant Activity of Pectic Polysaccharides of Fireweed ( Epilobium angustifolium L.). Molecules 2021; 26:molecules26237290. [PMID: 34885872 PMCID: PMC8658847 DOI: 10.3390/molecules26237290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to isolate pectins with antioxidant activity from the leaves of Epilobium angustifolium L. Two pectins, EA-4.0 and EA-0.8, with galacturonic acid contents of 88 and 91% were isolated from the leaves of E. angustifolium L. by the treatment of plant raw materials with aqueous hydrochloric acid at pH 4.0 and 0.8, respectively. EA-4.0 and EA-0.8 were found to scavenge the DPPH radical in a concentration-dependent manner at 17–133 μg/mL, whereas commercial apple pectin scavenged at 0.5–2 mg/mL. The antioxidant activity of EA-4.0 was the highest and exceeded the activity of EA-0.8 and a commercial apple pectin by 2 and 39 times (IC50—0.050, 0.109 and 1.961 mg/mL), respectively. Pectins EA-4.0 and EA-0.8 were found to possess superoxide radical scavenging activity, with IC50s equal to 0.27 and 0.97 mg/mL, respectively. Correlation analysis of the composition and activity of 32 polysaccharide fractions obtained by enzyme hydrolysis and anionic exchange chromatography revealed that the antioxidant capacity of fireweed pectins is mainly due to phenolics and is partially associated with xylogalacturonan chains. The data obtained demonstrate that pectic polysaccharides appeared to be bioactive components of fireweed leaves with high antioxidant activity, which depend on pH at their extraction.
Collapse
|
14
|
Li J, Huang G. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Qiu K, Li Z, Long Y, Lu Z, Zhu W. Study on extraction methods of polysaccharides from a processed product of Aconitum carmichaeli Debx. RSC Adv 2021; 11:21259-21268. [PMID: 35478822 PMCID: PMC9034042 DOI: 10.1039/d1ra03628a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese medicine PaoTianXiong (PTX) is a processed product of Aconitum carmichaeli Debx. with polysaccharide as the main ingredient. The properties of PTX polysaccharide (PTXP) may be affected by different extraction methods. To develop and utilize PTXP better, it is of great significance to study the extraction methods of PTXP. Thus, we extracted PTXPs with dilute alkaline water extraction, ultrasound-assisted extraction, cellulase-assisted extraction, and hot water extraction (HWE), respectively. The characterizations of PTXPs extracted by different methods were analyzed based on purity determination, infrared analysis, molecular weight and monosaccharide composition. And antioxidant experiments of PTXPs were conducted. The results showed that PTXPs extracted by the four extraction methods were all glucan. After purification, the PTXPs showed similar antioxidant activity in vitro. The molecular weight of polysaccharides extracted by the cellulase-assisted method was different from that extracted by the other three methods. Our results showed that not only the yield but also the effect of extraction methods on the properties of PTXP should be considered when selecting the best extraction method. Therefore, HWE was considered to be the best extraction method of PTXP. The yield and purity of purified PTXP were 24.5% and 97.1%, respectively. The optimized extraction conditions were: an extraction temperature of 90 °C, extraction time of 2.17 h, solid-liquid ratio of 1 : 29 (g mL-1), and number of extractions of 2.
Collapse
Affiliation(s)
- Kuncheng Qiu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510120 China
| | - Zunjiang Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510120 China
| | - Yingxin Long
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510120 China
| | - Zhongyu Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510120 China
| | - Wei Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510120 China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome China
| |
Collapse
|
16
|
Wang Q, Yang F, Jia D, Wu T. Polysaccharides and polyphenol in dried Morinda citrifolia fruit tea after different processing conditions: Optimization analysis using response surface methodology. PeerJ 2021; 9:e11507. [PMID: 34123597 PMCID: PMC8164410 DOI: 10.7717/peerj.11507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/03/2021] [Indexed: 01/02/2023] Open
Abstract
The increasing popularity of Morinda citrifolia has many medical and health benefits because of its rich polysaccharides (PSC) and polyphenols (PPN). It has become popular to brew the dry M. citrifolia fruit slice as tea in some regions of China. In this study, optimize the extraction parameters of M. citrifolia fruit tea polysaccharides and polyphenols using response surface methodology. The results indicated the highest PSC yield of 17% at 46 °C for 11 min and the ratio of water/M. citrifolia fruit powder was 78 mL/g. The optimum extraction of PPN was at 95 °C for 10 min and the ratio of water/M. citrifolia fruit powder 90 mL/g, with 8.93% yield. Using dry M. citrifolia fruit slices as a tea is reported for the first time. Based on the results, the maximum level of PSC can be obtained under condition by infusing about four dried M. citrifolia fruit slice with average thickness and size in warm boiled water for 11 min, taking a 300 mL cup (300 mL of water) for example. The maximum level of PPN can be obtained by adding three slices of dried M. citrifolia fruit slice to boiled water for 10 min. Considering the powder used in our study, the further pulverization of cutting into powder is more conducive to material precipitation. This study provides a scientific basis for obtaining PSC and PPN from dry M. citrifolia fruit slice tea by brewing.
Collapse
Affiliation(s)
- Qingfen Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Fei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Dandan Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Tian Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| |
Collapse
|
17
|
Zhou HC, Guo CA, Yu WW, Yan XY, Long JP, Liu ZC, Liang XQ, Liu HB. Zizyphus jujuba cv. Muzao polysaccharides enhance intestinal barrier function and improve the survival of septic mice. J Food Biochem 2021; 45:e13722. [PMID: 33855723 DOI: 10.1111/jfbc.13722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to examine the role of Zizyphus jujuba cv. Muzao polysaccharides (ZJPs) in protecting intestinal barrier function and the survival of septic mice. The sepsis mouse model was generated through cecal ligation and puncture (CLP) to observe the effect of ZJPs on the function of the intestinal barrier in the context of sepsis. We observed the clinical symptoms and survival time of the mice and evaluated serum inflammatory cytokines, intestinal pathological changes and intestinal permeability. Moreover, tight junction (TJ) proteins and apoptosis-associated proteins in intestinal tissue were examined. Finally, TLR4/NF-κB pathway-related proteins were measured in all groups. The results showed that pretreatment with ZJPs improved clinical and histological scores and reduced intestinal barrier permeability, and the levels of proinflammatory factors were decreased. Pretreatment with ZJPs also upregulated the levels of TJ proteins and downregulated the expression of proapoptotic proteins. Moreover, the activation of TLR4/NF-κB signaling was partly inhibited in septic mice by ZJPs pretreatment. The current study provides evidence that ZJPs have the potential to protect intestinal barrier function and improve the survival of septic mice via the attenuation of TLR4/NF-κB inflammatory signaling. PRACTICAL APPLICATIONS: This study reports the potential protective effect of ZJPs against cecal ligation and puncture (CLP)-induced sepsis. Our data reveal that CLP induced damage to the gut mucosal barrier, inflammation, and apoptosis in intestinal tissues. However, pretreatment with ZJPs improved clinical and histological scores, reduced intestinal barrier permeability, and decreased the levels of proinflammatory factors in mice. Pretreatment with ZJPs also upregulated the levels of TJ proteins and downregulated the expression of proapoptotic proteins. Moreover, the activation of TLR4/NF-κB signaling was partly inhibited in septic mice after ZJPs pretreatment. These findings provide evidence that pretreatment with ZJPs has the potential to attenuate CLP-induced gut damage in mice by restraining inflammation and apoptosis via the attenuation of NF-κB signaling. It provides a basis for further study of ZJPs in sepsis.
Collapse
Affiliation(s)
- Hai-Cun Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Chang-An Guo
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Wen-Wen Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Xin-Yan Yan
- Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Jian-Ping Long
- Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Zhi-Chang Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Xiao-Qin Liang
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Pathology Department, Gansu Province People Hospital, Lanzhou, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| |
Collapse
|
18
|
Huang H, Huang G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem Biol Drug Des 2020; 96:1209-1222. [DOI: 10.1111/cbdd.13794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province Wuhan Institute of Technology Wuhan PR China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry Chongqing Normal University Chongqing PR China
| |
Collapse
|
19
|
Hojjati M, Beirami-Serizkani F. Structural characterization, antioxidant and antibacterial activities of a novel water soluble polysaccharide from Cordia myxa fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00586-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|