1
|
Feng H, Wu M, Wang Z, Wang X, Chen J, Yang J, Liu P. Genome-Wide Identification and Functional Analysis of NAP1 in Triticum aestivum. Genes (Basel) 2023; 14:genes14051041. [PMID: 37239401 DOI: 10.3390/genes14051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
As a main molecular chaperone of histone H2A-H2B, nucleosome assembly protein 1 (NAP1) has been widely researched in many species. However, there is little research investigating the function of NAP1 in Triticum aestivum. To understand the capabilities of the family of NAP1 genes in wheat and the relationship between TaNAP1 genes and plant viruses, we performed comprehensive genome-wide analysis and quantitative real-time polymerase chain reaction (qRT-PCR) for testing expression profiling under hormonal and viral stresses. Our results showed that TaNAP1 was expressed at different levels in different tissues, with higher expression in tissues with high meristematic capacity, such as roots. Furthermore, the TaNAP1 family may participate in plant defense mechanisms. This study provides a systematic analysis of the NAP1 gene family in wheat and lays the foundation for further studies on the function of TaNAP1 in the response of wheat plants to viral infection.
Collapse
Affiliation(s)
- Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mila Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ziqiong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Zhang Y, Zhang J, Yang D, Jin Y, Liu X, Zhang Z, Gu L, Zhang H. Genome-Wide Identification of NAP1 and Function Analysis in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2022; 23:ijms23126491. [PMID: 35742936 PMCID: PMC9223780 DOI: 10.3390/ijms23126491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
The nucleosome assembly protein 1 (NAP1) family is the main histone chaperone of histone H2A–H2B. To explore the function of NAP1 family genes in moso bamboo (Phyllostachys edulis), characterized by extremely rapid growth and a long flowering cycle, we originally conducted a genome-wide analysis of the PheNAP1 gene. The phylogenetic relationship, gene expression pattern, DNA methylation, and histone modification were analyzed. Eventually, 12 PheNAP1 genes were recognized from the Phyllostachys edulis genome, divided into two sorts: the NRP subfamily (four members) and the NAP subfamily (eight members). Highly conserved motifs exist in each subfamily, which are distinct between subfamilies. PheNAP1 was distributed homogeneously on 10 out of 24 chromosomes, and gene duplication contributed significantly to the enhancement of the PheNAP1 gene in the genome. Cis-acting element analysis showed that PheNAP1 family genes are involved in light, hormone, and abiotic stress responses and may play an important role in the rapid growth and flowering. PheNAP1 exhibited the highest expression level in fast-growing shoots, indicating it is closely associated with the rapid growth of moso bamboo. Besides, PheNAP1 can rescue the early-flowering phenotype of nrp1-1 nrp2-2, and it affected the expression of genes related to the flowering pathway, like BSU1, suggesting the vital role that PheNAP1 may take in the flowering process of moso bamboo. In addition, histone modification results showed that PheNAP1 could bind to phosphorylation-, acetylation-, and methylation-modified histones to further regulate gene expression. A sketch appears: that PheNAP1 can accompany histones to regulate fast-growth- and flowering-related genes in moso bamboo. The consequences of this study enrich the understanding of the epigenetic regulation mechanism of bamboo plants and lays a foundation for further studies on the role of the NAP1 gene in Phyllostachys edulis and the function of chromatin regulation in forest growth and development.
Collapse
Affiliation(s)
- Yaxing Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.J.); (X.L.); (Z.Z.)
| | - Jun Zhang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yandong Jin
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.J.); (X.L.); (Z.Z.)
| | - Xuqing Liu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.J.); (X.L.); (Z.Z.)
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.J.); (X.L.); (Z.Z.)
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.J.); (X.L.); (Z.Z.)
- Correspondence: (L.G.); (H.Z.)
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.J.); (X.L.); (Z.Z.)
- Correspondence: (L.G.); (H.Z.)
| |
Collapse
|
3
|
NAP1-RELATED PROTEIN1 and 2 negatively regulate H2A.Z abundance in chromatin in Arabidopsis. Nat Commun 2020; 11:2887. [PMID: 32513971 PMCID: PMC7280298 DOI: 10.1038/s41467-020-16691-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved. Here, we show that NRP proteins cause a decrease of H2A.Z-containing nucleosomes in Arabidopsis under standard growing conditions. nrp1-1 nrp2-2 double mutants show an over-accumulation of H2A.Z genome-wide, especially at heterochromatic regions normally H2A.Z-depleted in wild-type plants. Our work suggests that NRP proteins regulate gene expression by counteracting SWR1, thereby preventing excessive accumulation of H2A.Z. The histone variant H2A.Z is deposited by the SWR1 complex to replace H2A in Arabidopsis, but the mechanism of H2A.Z removal is unclear. Here, the authors show that NRP proteins can regulate gene expression by counteracting SWR1 and prevent excessive accumulation of H2A.Z.
Collapse
|
4
|
Zhang J. Two-dimensional infrared spectral explorations into bilayer and monolayer self-assemblies of amphiphilic polypeptides. J Biomol Struct Dyn 2020; 39:9-19. [PMID: 31914853 DOI: 10.1080/07391102.2020.1713891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Poly(2-(3-((2-hydroxyethyl)amino)-3-oxopropyl)ethyleneamido) (PHAOE) is an amphiphilic polypeptide. The self-assembly is significant, but the ultrafast dynamic analyses of the peptide self-assembly are exiguous and worth further exploring. In this investigation, the temporal dynamic characteristics of the aggregates and unaggregated PHAOEs are mined by the two-dimensional infrared (2D IR) spectroscopy. The homogeneous and inhomogeneous diffusion processes of the carbonyl stretching modes of the unaggregated PHAOEs are slower than those of the self-assemblies. The inhomogeneous spectral diffusion proportion of the biopolymer PHAOE in methanol is greater than that in dimethyl sulfoxide (DMSO). The solvation shells surround the aggregates and unaggregated PHAOEs in the protic solvent methanol, but there are not any solvation shells around the aggregates or unaggregated PHAOEs in the dipolar solvent DMSO. The massive hydrogen-bonded monolayer self-assembly has merely an aggregate of PHAOEs and no solvation shell in DMSO. But the hydrogen-bonded bilayer self-assembly has a self-assembled methanol shell and an interior aggregate of PHAOEs in methanol. The self-assemblies of PHAOEs motivate the methanols to self-assemble. The large delocalized amide structure results in the fast spectral diffusion of the carbonyl stretching mode.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jun Zhang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
5
|
Kumar A, Vasudevan D. Structure-function relationship of H2A-H2B specific plant histone chaperones. Cell Stress Chaperones 2020; 25:1-17. [PMID: 31707537 PMCID: PMC6985425 DOI: 10.1007/s12192-019-01050-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022] Open
Abstract
Studies on chromatin structure and function have gained a revived popularity. Histone chaperones are significant players in chromatin organization. They play a significant role in vital nuclear functions like transcription, DNA replication, DNA repair, DNA recombination, and epigenetic regulation, primarily by aiding processes such as histone shuttling and nucleosome assembly/disassembly. Like the other eukaryotes, plants also have a highly orchestrated and dynamic chromatin organization. Plants seem to have more isoforms within the same family of histone chaperones, as compared with other organisms. As some of these are specific to plants, they must have evolved to perform functions unique to plants. However, it appears that only little effort has gone into understanding the structural features of plant histone chaperones and their structure-function relationships. Studies on plant histone chaperones are essential for understanding their role in plant chromatin organization and how plants respond during stress conditions. This review is on the structural and functional aspects of plant histone chaperone families, specifically those which bind to H2A-H2B, viz nucleosome assembly protein (NAP), nucleoplasmin (NPM), and facilitates chromatin transcription (FACT). Here, we also present comparative analyses of these plant histone chaperones with available histone chaperone structures. The review hopes to incite interest among researchers to pursue further research in the area of plant chromatin and the associated histone chaperones.
Collapse
Affiliation(s)
- Ashish Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | |
Collapse
|