1
|
Liu Y, Du Z, Sheng C, Zhang G, Yan S, Zhang Z, Qin S. The Double-Edge Sword of Natural Phenanthrenes in the Landscape of Tumorigenesis. Molecules 2025; 30:1204. [PMID: 40141980 PMCID: PMC11946065 DOI: 10.3390/molecules30061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Phenanthrenes, which are polycyclic aromatic hydrocarbons comprising three benzene rings, exhibit a diverse range of functions. These compounds are utilized in the synthesis of resins, plant growth hormones, reducing dyes, tannins and other products. Notably, phenanthrenes possess significant pharmacological properties, including anti-tumor, anti-inflammatory and antioxidant activities, offering broad prospects for development, particularly in the fields of medicine and health. Interestingly, although aristolochic acid (AA) is a potent carcinogen, its lactam analogs can kill cancer cells and exhibit therapeutic effects against cancer. This provides a promising strategy for the toxicity-effect transformation of phenanthrenes. In this paper, we reviewed 137 articles to systematically review the anti-tumor potential and toxic effects of natural phenanthrenes isolated from the 19th century to the present, thus offering references and laying a foundation for their further research, development and utilization.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ziwei Du
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
| | - Chen Sheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
| | - Guangshuai Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Si Yan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhijun Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
| | - Shuanglin Qin
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Liu L, You H, Ye L, Ou Q, Zhao Y, Wang J, Niu J. Unveiling the Catalytic Roles of DsBBS1 and DsBBS2 in the Bibenzyl Biosynthesis of Dendrobium sinense. Molecules 2024; 29:3682. [PMID: 39125085 PMCID: PMC11314366 DOI: 10.3390/molecules29153682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Dendrobium sinense, an endemic medicinal herb in Hainan Island, is rich in bibenzyl compounds. However, few studies have explored the molecular mechanisms of bibenzyl biosynthesis. This study presents a comprehensive analysis of DsBBS1 and DsBBS2 function in D. sinense. A molecular docking simulation revealed high-resolution three-dimensional structural models with minor domain orientation differences. Expression analyses of DsBBS1 and DsBBS2 across various tissues indicated a consistent pattern, with the highest expression being found in the roots, implying that they play a pivotal role in bibenzyl biosynthesis. Protein expression studies identified optimal conditions for DsBBS2-HisTag expression and purification, resulting in a soluble protein with a molecular weight of approximately 45 kDa. Enzyme activity assays confirmed DsBBS2's capacity to synthesize resveratrol, exhibiting higher Vmax and lower Km values than DsBBS1. Functional analyses in transgenic Arabidopsis demonstrated that both DsBBS1 and DsBBS2 could complement the Atchs mutant phenotype. The total flavonoid content in the DsBBS1 and DsBBS2 transgenic lines was restored to wild-type levels, while the total bibenzyl content increased. DsBBS1 and DsBBS2 are capable of catalyzing both bibenzyl and flavonoid biosynthesis in Arabidopsis. This study provides valuable insights into the molecular mechanisms underlying the biosynthesis of bibenzyl compounds in D. sinense.
Collapse
Affiliation(s)
| | | | | | | | | | - Jia Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants—Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (L.L.); (H.Y.); (L.Y.); (Q.O.); (Y.Z.)
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants—Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (L.L.); (H.Y.); (L.Y.); (Q.O.); (Y.Z.)
| |
Collapse
|
3
|
Roy CP, Karmakar S, Dash J. Synthesis of Phenanthrenes and 1-Hydroxyphenanthrenes via Aromatization-Assisted Ring-Closing Metathesis: toward Polynuclear Aromatic Hydrocarbons. J Org Chem 2024; 89:10511-10523. [PMID: 39007427 DOI: 10.1021/acs.joc.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This study presents an efficient synthetic strategy for phenanthrenes and 1-hydroxyphenanthrenes through aromatization-assisted ring-closing metathesis (RCM). It involves vinylation of 1-bromo-2-naphthaldehyde derivatives, Barbier allylation, and subsequent one-pot RCM/dehydration of the diene precursors to yield phenanthrene derivatives. Further, the corresponding keto analogues of diene precursors produce 1-hydroxyphenanthrenes through RCM and aromatization-driven keto-enol tautomerism. This pathway enables rapid access to a diverse array of functionalized phenanthrenes and 1-hydroxyphenanthrenes, including synthetically challenging derivatives containing both -OH and -OMe groups via the sequential construction of the terminal phenanthrene ring.
Collapse
Affiliation(s)
- Charles Patriot Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Shilpi Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Barron D, Ratinaud Y, Rambousek S, Brinon B, Naranjo Pinta M, Sanders MJ, Sakamoto K, Ciclet O. Unambiguous Characterization of Commercial Natural (Dihydro)phenanthrene Compounds Is Vital in the Discovery of AMPK Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14993-15004. [PMID: 38896806 DOI: 10.1021/acs.jafc.4c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
These days, easy access to commercially available (poly)phenolic compounds has expanded the scope of potential research beyond the field of chemistry, particularly in the area of their bioactivity. However, the quality of these compounds is often overlooked or not even considered. This issue is illustrated in this study through the example of (dihydro)phenanthrenes, a group of natural products present in yams, as AMP-activated protein kinase (AMPK) activators. A study conducted in our group on a series of compounds, fully characterized using a combination of chemical synthesis, NMR and MS techniques, provided evidence that the conclusions of a previous study were erroneous, likely due to the use of a misidentified commercial compound by its supplier. Furthermore, we demonstrated that additional representatives of the (dihydro)phenanthrene phytochemical classes were able to directly activate AMPK, avoiding the risk of misinterpretation of results based on analysis of a single compound alone.
Collapse
Affiliation(s)
- Denis Barron
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Yann Ratinaud
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Simona Rambousek
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | | | - Matthew J Sanders
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Kei Sakamoto
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Olivier Ciclet
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
|
6
|
Slavova I, Tomova T, Kusovska S, Chukova Y, Argirova M. Phytochemical Constituents and Pharmacological Potential of Tamus communis Rhizomes. Molecules 2022; 27:molecules27061851. [PMID: 35335214 PMCID: PMC8949886 DOI: 10.3390/molecules27061851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Tamus communis L. is a plant distributed in a number of geographical areas whose rhizome has been used for centuries as an anti-inflammatory and analgesic remedy. This review aims to summarize the current knowledge of the chemical composition and biological activity of the extracts or individual compounds of the rhizome. The data for the principal secondary metabolites are systematized: sterols, steroidal saponins, phenanthrenes, dihydrophenanthrenes, etc. Results of biological tests for anti-inflammatory action, cytotoxicity, anticholinesterase effect, and xanthine oxidase inhibition are presented. Some open questions about the therapeutic properties of the plant are also addressed.
Collapse
|
7
|
Nam B, Jang HJ, Han AR, Kim YR, Jin CH, Jung CH, Kang KB, Kim SH, Hong MJ, Kim JB, Ryu HW. Chemical and Biological Profiles of Dendrobium in Two Different Species, Their Hybrid, and Gamma-Irradiated Mutant Lines of the Hybrid Based on LC-QToF MS and Cytotoxicity Analysis. PLANTS 2021; 10:plants10071376. [PMID: 34371579 PMCID: PMC8309310 DOI: 10.3390/plants10071376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
The Dendrobium species (Orchidaceae) has been cultivated as an ornamental plant as well as used in traditional medicines. In this study, the chemical profiles of Dendrobii Herba, used as herbal medicine, Dendrobium in two different species, their hybrid, and the gamma-irradiated mutant lines of the hybrid, were systematically investigated via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QToF MS). Among the numerous peaks detected, 17 peaks were unambiguously identified. Gigantol (1), (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one (2), tristin (3), (−)-syringaresinol (4), lusianthridin (5), 2,7-dihydroxy-phenanthrene-1,4-dione (6), densiflorol B (7), denthyrsinin (8), moscatilin (9), lusianthridin dimer (10), batatasin III (11), ephemeranthol A (12), thunalbene (13), dehydroorchinol (14), dendrobine (15), shihunine (16), and 1,5,7-trimethoxy-2-phenanthrenol (17), were detected in Dendrobii Herba, while 1, 2, and 16 were detected in D. candidum, 1, 11, and 16 in D. nobile, and 1, 2, and 16 in the hybrid, D. nobile × candidum. The methanol extract taken of them was also examined for cytotoxicity against FaDu human hypopharynx squamous carcinoma cells, where Dendrobii Herba showed the greatest cytotoxicity. In the untargeted metabolite analysis of 436 mutant lines of the hybrid, using UPLC-QToF MS and cytotoxicity measurements combined with multivariate analysis, two tentative flavonoids (M1 and M2) were evaluated as key markers among the analyzed metabolites, contributing to the distinction between active and inactive mutant lines.
Collapse
Affiliation(s)
- Bomi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
- Institute of Natural Cosmetic Industry for Namwon, Namwon-si 55801, Jeollabuk-do, Korea
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju-si 28116, Chungbuk-do, Korea;
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Ye-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Chang-Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si 54810, Jeollabuk-do, Korea;
| | - Kyo-Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Sang-Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Min-Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju-si 28116, Chungbuk-do, Korea;
- Correspondence: ; Tel.: +82-43-240-6117
| |
Collapse
|
8
|
Microbial Glycosylation of Phenanthrene and Bibenzyls by Mucor hiemalis. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20974508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microbial transformation of denthyrsinin (1), gigantol (2), and batatasin III (3), the major constituents of Dendrobium species (Orchidaceae), was performed using the filamentous fungus Mucor hiemalis KCTC 26779. Three glycosylated metabolites were obtained in the biotransformation of 1-3, and their structures were identified as denthyrsinin-6- O-β-d-glucoside (4), gigantol-5- O-β-d-glucoside (5), and batatasin III-3- O-β-d-glucoside (6) by analyzing 1-dimensional and 2-dimensional-nuclear magnetic resonance spectra, as well as high-resolution electrospray ionization mass spectral data. Among them, metabolite 4 has not been previously reported. Mucor hiemalis was revealed to catalyze enzymatically glucosylation of the hydroxyl group of phenanthrenes and bibenzyls. This research provides an efficient approach for the glycosylation of phenanthrenes and bibenzyls and can expand the library of available phenanthrene and bibenzyl derivatives for further biological evaluations.
Collapse
|
9
|
Lee E, Han AR, Nam B, Kim YR, Jin CH, Kim JB, Eun YG, Jung CH. Moscatilin Induces Apoptosis in Human Head and Neck Squamous Cell Carcinoma Cells via JNK Signaling Pathway. Molecules 2020; 25:molecules25040901. [PMID: 32085431 PMCID: PMC7071095 DOI: 10.3390/molecules25040901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Dendrobii Herba is an herbal medicine that uses the stems of Dendrobium species (Orchidacea). It has been traditionally used to treat fever, hydrodipsomania, stomach disorders, and amyotrophia. In our previous study, a bibenzyl compound, moscatilin, which is isolated from Dendrobii Herba, showed potent cytotoxicity against a FaDu human pharyngeal squamous carcinoma cell line. Prompted by this finding, we performed additional studies in FaDu cells to investigate the mechanism of action. Moscatilin induced FaDu cell death by using 5 μM of concentration and by mediating apoptosis, whereas cell proliferation following treatment with 1 μM of moscatilin was not suppressed to the same levels as by the anti-cancer agent, cisplatin. Apoptosis-related protein expression (cleaved caspase-8, cleaved caspase-7, cytochrome c, cleaved caspase-9, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) was increased by treating with 5 μM of moscatilin. This suggests that moscatilin-mediated apoptosis is associated with the extrinsic and intrinsic apoptotic signaling pathways. In addition, moscatilin-induced apoptosis was mediated by the c-Jun N-terminal kinase (JNK) signaling pathway. Overall, this study identified additional biological activity of moscatilin derived from natural products and suggested its potential application as a chemotherapeutic agent for the management of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Bomi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Ye-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
| | - Chan-Hun Jung
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Korea
- Correspondence: ; Tel.: +82-63-711-102
| |
Collapse
|