1
|
Kopystecka A, Kozioł I, Radomska D, Bielawski K, Bielawska A, Wujec M. Vaccinium uliginosum and Vaccinium myrtillus-Two Species-One Used as a Functional Food. Nutrients 2023; 15:4119. [PMID: 37836403 PMCID: PMC10574057 DOI: 10.3390/nu15194119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red-purple-blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin. Bilberry is the most important economically wild berry in Northern Europe, and it is also extensively used in juice and food production. A review of the latest literature was performed to assess the composition and biological activity of V. uliginosum and V. myrtillus. Clinical studies confirm the benefits of V. uliginosum and V. myrtillus supplementation as part of a healthy diet. Because of their antioxidant, anti-inflammatory, anti-cancer, and apoptosis-reducing activity, both bog bilberries and bilberries can be used interchangeably as a dietary supplement with anti-free radical actions in the prevention of cancer diseases and cataracts, or as a component of sunscreen preparations.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Ilona Kozioł
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
2
|
Bai X, Zhou L, Zhou L, Cang S, Liu Y, Liu R, Liu J, Feng X, Fan R. The Research Progress of Extraction, Purification and Analysis Methods of Phenolic Compounds from Blueberry: A Comprehensive Review. Molecules 2023; 28:molecules28083610. [PMID: 37110844 PMCID: PMC10140916 DOI: 10.3390/molecules28083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Blueberry is the source of a variety of bioactive substances, including phenolic compounds, such as anthocyanins, pterostilbene, phenolic acids, etc. Several studies have revealed that polyphenols in blueberry have important bioactivities in maintaining health, such as antioxidant and anti-tumor activities, immune regulation, the prevention of chronic diseases, etc. Therefore, these phenolic compounds in blueberries have been widely used in the field of healthcare, and the extraction, isolation, and purification of phenolic compounds are the prerequisites for their utilization. It is imperative to systematically review the research progress and prospects of phenolic compounds present in blueberries. Herein, the latest progress in the extraction, purification, and analysis of phenolic compounds from blueberries is reviewed, which can in turn provide a foundation for further research and usage of blueberries.
Collapse
Affiliation(s)
- Xinyu Bai
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Zhou
- Department of Food Science, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Song Cang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yuhan Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Rui Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Jie Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
3
|
Ahmed T, Rana MR, Maisha MR, Sayem A, Rahman M, Ara R. Optimization of ultrasound-assisted extraction of phenolic content & antioxidant activity of hog plum ( Spondias pinnata L. f. kurz) pulp by response surface methodology. Heliyon 2022; 8:e11109. [PMID: 36281389 PMCID: PMC9587330 DOI: 10.1016/j.heliyon.2022.e11109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background The pulp of hog plum (Spondias pinnata L. f. kurz) has been documented as a potential source of nutritional, physiological, and pharmacological purposes due to its phenolic content (TPC) and antioxidant activity. However, an optimal extraction condition for hog plum pulp remains elusive. Optimization of extraction process conditions using Ultrasound-assisted extraction (UAE) technique has recently attracted research interest. Objectives The present study focused on optimizing the UAE extraction conditions of TPC and antioxidant activities (DPPH and FRAP) from hog plum pulp by using response surface methodology (RSM). Methods The RSM with a three-factor-three-level Box-Behnken design (BBD) was used to optimize the extraction conditions. The BBD was used to investigate the effects of three independent variables, X1: ultrasonic temperature (40-60 °C), X2: ultrasonic time (30-60 min), and X3: ethanol concentration (40-80%) on TPC, DPPH and FRAP assays. Fifteen experimental trials have been carried out to optimize the UAE extraction conditions. A second-order polynomial model was used for predicting the responses. Statistically, the model was validated using an analysis of variance (ANOVA). Results The ANOVA results revealed that UAE extraction temperature, time, and ethanol concentration had a significant (p < 0.01) influence on the TPC, DPPH, and FRAP, suggesting that all extraction parameters included in this investigation were crucial to the optimization process. For TPC, DPPH, and FRAP, the R2 values were 0.9976, 0.9943, and 0.9989, respectively, indicating that the models developed based on second-order polynomials were satisfactorily accurate for analyzing interactions between parameters (response and independent variables). RSM analysis showed that the optimal extraction parameters which maximized TPC, DPPH, and FRAP were 52.03 °C temperature, 30 min, time, and 79.99% ethanol. Under optimal conditions, experimental values for TPC, DPPH, and FRAP were 370 ± 26 mg GAE/100g DM, 57 ± 7%, and 7650 ± 460 mg AAE/100 g DM, respectively. The experimental values showed a good agreement with the predicted values with residual standard error values below 0.2% under optimum conditions. Pearson's correlation coefficients (r) demonstrate that the TPC showed a weak positive correlation with DPPH (r = 0.3508) and moderate correlation with FRAP (r = 0.3963). Conclusion The experimental results agreed with the predicted values, confirming the model's appropriateness and RSM's efficacy in optimizing the UAE extraction conditions. This optimized UAE extraction method may be effective in the industrial extraction process; moreover, further research should be conducted to determine the efficacy of these extracts when applied to food.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - Md Rahmatuzzaman Rana
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - Mahjabin Rahman Maisha
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - A.S.M. Sayem
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - Mizanur Rahman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - Rowshon Ara
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| |
Collapse
|
4
|
Huang X, Gao W, Yun X, Qing Z, Zeng J. Effect of Natural Antioxidants from Marigolds (Tagetes erecta L.) on the Oxidative Stability of Soybean Oil. Molecules 2022; 27:molecules27092865. [PMID: 35566214 PMCID: PMC9105600 DOI: 10.3390/molecules27092865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, synthetic antioxidants that are widely used in foods have been shown to cause detrimental health effects, and there has been growing interest in antioxidants realised from natural plant extracts. In this study, we investigate the potential effects of natural antioxidant components extracted from the forage plant marigold on the oxidative stability of soybean oil. First, HPLC-Q-TOF-MS/MS was used with 1,1-diphenyl-2-picrylhydrazyl (DPPH) to screen and identify potential antioxidant components in marigold. Four main antioxidant components were identified, including quercetagetin-7-O-glucoside (1), quercetagetin (2), quercetin (3) and patuletin (4). Among them, quercetagetin (QG) exhibited the highest content and the strongest DPPH radical scavenging activity and effectively inhibited the production of oxidation products in soybean oil during accelerated oxidation, as indicated by reductions in the peroxide value (PV) and acid value (AV). Then, the fatty acids and volatile compounds of soybean oil were determined with gas chromatography–mass spectrometry (GC-MS) and headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS). A total of 108 volatile components, including 16 alcohols, 23 aldehydes, 25 ketones, 4 acids, 15 esters, 18 hydrocarbons, and 7 other compounds, were identified. QG significantly reduced the content and number of aldehydes and ketones, whereas the formation of acids and hydrocarbons was completely prevented. In addition, the fatty acid analysis demonstrated that QG significantly inhibited oxidation of unsaturated fatty acids. Consequently, QG was identified as a potential, new natural antioxidant that is believed to be safe, effective and economical, and it may have potential for use in plant extracts feed additives.
Collapse
Affiliation(s)
- Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (X.H.); (X.Y.)
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wei Gao
- Chenguang Biotechnology Company Limited, Handan 056000, China;
| | - Xuan Yun
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (X.H.); (X.Y.)
| | - Zhixing Qing
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (X.H.); (X.Y.)
- Correspondence: (Z.Q.); (J.Z.); Tel.: +86-731-84686560 (Z.Q. & J.Z.)
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (X.H.); (X.Y.)
- Correspondence: (Z.Q.); (J.Z.); Tel.: +86-731-84686560 (Z.Q. & J.Z.)
| |
Collapse
|
5
|
Yang J, Li N, Wang C, Chang T, Jiang H. Ultrasound-homogenization-assisted extraction of polyphenols from coconut mesocarp: Optimization study. ULTRASONICS SONOCHEMISTRY 2021; 78:105739. [PMID: 34500312 PMCID: PMC8429963 DOI: 10.1016/j.ultsonch.2021.105739] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 05/10/2023]
Abstract
Coconut pericarp (shell fiber (mesocarp) and shell (endocarp)), the main by-product of coconut production, is often discarded and causing serious environmental pollution. To make better use of coconut pericarp, the extraction process of polyphenols from coconut mesocarp (CM) carefully studied by screening seven solvent systems, optimizing the assisted ultrasonic process by response surface methodology, and comparing the four processes of Ultrasound-Assisted Extraction (UAE), Homogenization-Assisted Extraction (HAE), Homogenization-Ultrasound-Assisted Extraction (HUAE), and Ultrasound-Homogenization-Assisted Extraction (UHAE). The UAE and HAE are considered to be the main methods for efficient extraction of natural active ingredients. The former effectively destroys the cell wall structure and promotes the intermolecular diffusion based on the cavitation, thermal and mechanical effect of ultrasonic, while the latter breaks the material based on strong shear force between the rotor and stator. Their combinations (HUAE and UHAE) enhance the damage to the cell wall of raw materials and improve the extraction efficiency by the synergistic effect. The results showed that using 60% acetone (V : V) as extraction solvent, solid-liquid ratio of 1:5 g mL-1, ultrasonic temperature of 80 ℃, ultrasonic time of 80 min, ultrasonic power of 225 W, and then homogenizing at 10,000 rpm for 10 min, the total flavonoid content of CM reached the maximum value of 551.99 ± 12.69 mg Rutin g-1 dry weight (dw), while the total phenolic content reached the maximum value of 289.48 ± 4.41 mg GAE g-1 dw at 10,000 rpm for 5 min, which may be related to the oxidative degradation of polyphenols caused by the increase of polyphenol oxidase with the extension of homogenization time. This study provides a technical guarantee for the further utilization of phenolic substances in CM.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051, China.
| | - Nana Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051, China
| | - Chunyu Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051, China
| | - Tao Chang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051, China
| | - Huichuan Jiang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| |
Collapse
|
6
|
Lei J, Zhu L, Zheng Y, Yu M, Li G, Zhang F, Linghu L, Yu J, Luo Y, Luo X, Gang W, Qin C. Homogenate-Ultrasound-Assisted Ionic Liquid Extraction of Total Flavonoids from Selaginella involven: Process Optimization, Composition Identification, and Antioxidant Activity. ACS OMEGA 2021; 6:14327-14340. [PMID: 34124456 PMCID: PMC8190928 DOI: 10.1021/acsomega.1c01087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/17/2023]
Abstract
In this paper, an efficient approach to extract total flavonoids (TFs) from Selaginella involvens (Sw.) Spring using homogenate-ultrasound-assisted ionic liquid (IL) extraction (HUA-ILE) was first developed. The results indicated that EPyBF4 was selected as the suitable extractant. According to the single factor experiment and response surface methodology, the IL concentration of 0.10 mol/L, the extraction time of 160 s, the liquid/solid ratio of 13:1 mL/g, and the extraction power of 300 W were concluded as the best conditions. A yield of 8.48 ± 0.27 mg/g TF content was obtained. Compared with HUA ethanol extraction, ultrasound-assisted IL extraction, and percolation extraction, the TF content obtained by the HUA-ILE method could be increased by 2 to 4 times, and the extraction time could be reduced by 100 times. Furthermore, 16 compounds of the TF extract were finally identified through ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, among which 11 compounds were first discovered in S. involven. The contents of six biflavonoids in S. involven were determined simultaneously adopting high-performance liquid chromatography, including amentoflavone, hinokiflavone, bilobetin, ginkgetin, isoginkgetin, and heveaflavone. The TF extract in S. involven was proved to have potent antioxidant activity through the four antioxidant experiments. In conclusion, HUA-ILE was applied for the first time to exploit a green, efficient, and novel approach to extract TFs, and the research also provided promising prospects for applications of S. involven.
Collapse
Affiliation(s)
- Jie Lei
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Lei Zhu
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yu Zheng
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| | - Ming Yu
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Gang Li
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Feng Zhang
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Lang Linghu
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Jiaqi Yu
- The
Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yong Luo
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| | - Xirong Luo
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| | - Wang Gang
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Cheng Qin
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| |
Collapse
|
7
|
Echegaray N, Munekata PES, Gullón P, Dzuvor CKO, Gullón B, Kubi F, Lorenzo JM. Recent advances in food products fortification with anthocyanins. Crit Rev Food Sci Nutr 2020; 62:1553-1567. [PMID: 33198501 DOI: 10.1080/10408398.2020.1844141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anthocyanins are polyphenolic compounds belonging to the group of flavonoids in charge of providing red, purple, and blue colourations to different parts of trees and plants, such as leaves, flowers, fruits, roots, and stems. These substances have potential health benefits due to characteristics such as antioxidant and anti-inflammatory properties, which could be leveraged in the food industry. However, the use and handling of anthocyanins are conditioned due to the low stability of these molecules. For this reason, the application of adequate extraction, purification and stabilization techniques is required for its subsequent management. In this regards, green extraction methods and novel stabilization techniques are of particular interest in the utilization of these biocompounds. This review provides in-depth information about the extraction, purification, and stabilization of anthocyanins from different plant sources. Additionally, this work highlights the potential use of anthocyanins in the food industry for the formulation of different fortified foods and beverages, which could have beneficial health effects. Green technologies, are a promising tool to recover extracts rich in anthocyanins from different vegetable matrices, including by-products. The extracts obtained can be easily used in the fortification of baked foods, dairy products, and different beverages.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Francis Kubi
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
8
|
Zheleva-Dimitrova D, Sinan KI, Etienne OK, Zengin G, Gevrenova R, Mahomoodally MF, Lobine D, Mollica A. Chemical composition and biological properties of Synedrella nodiflora (L.) Gaertn: A comparative investigation of different extraction methods. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Application of Plackett-Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil. Antioxidants (Basel) 2019; 8:antiox8120627. [PMID: 31817714 PMCID: PMC6943644 DOI: 10.3390/antiox8120627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Considering the safety of synthetic antioxidants, more and more natural antioxidants have been developed and utilized in foods. This study aimed to screen out a natural antioxidant combination from many antioxidants, which could significantly affect the oxidation stability of anchovy oil, while Plackett–Burman design (PBD) methodology was employed in this screening. According to the statistical results of this design, sesamol, dihydromyricetin, teapolyphenol, and rosemary acid were four significant parameters on the oxidation stability of anchovy oil. Moreover, dihydromyricetin presented the best antioxidant effect among nine kinds of selected antioxidants when they were used alone in anchovy oil. Meanwhile, a combination including sesamol (0.02%), teapolyphenol (0.02%). and rosemary acid (0.02%) was adopted, and its antioxidant ability was similar to that of tert-butylhydroquinone (TBHQ). Additionally, phytic acid as a synergist was used and combined with sesamol, and the antioxidant ability of this combination was better than that of TBHQ. This study presented a reference for the industrial applications of natural antioxidants and synergists in anchovy oil.
Collapse
|