1
|
Wang Y, Sun F, Liang Y, Yan M, Hou Y, Hua H, Zhou D, Li N. Study on the Chemical Components and Anti-Neuroinflammatory Activity of the Roots of Clausena excavate Burm. f. Chem Biodivers 2025; 22:e202401653. [PMID: 39363759 DOI: 10.1002/cbdv.202401653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
The ethanol extract of the roots of Clausena excavata gave two previously undescribed coumarins, clauexcatin A (1) and clauexcatin B (2), as well as a pair of new isomers, trans/cis-clauexcatin C (3a, 3b), along with thirty known compounds. Among these, compound 33 was isolated from this genus for the first time. The structures of these compounds were elucidated based on their physicochemical properties and spectroscopic data. The anti-neuroinflammatory activities were assessed using LPS-activated BV-2 microglial cells. Compounds 6, 8, 17, 24, 29, and 30 exhibited significant inhibition of nitric oxide release in a dose-dependent manner, with their inhibitory effects being 1.2 to 10.9 times greater than that of the positive control (minocycline).
Collapse
Affiliation(s)
- Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Fuxin Sun
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yapeng Liang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Mi Yan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, 110167, P.R. China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, 110167, P.R. China
| | - Huiming Hua
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
2
|
Pannangrong W, Nillert N, Boonyarat C, Welbat JU, Yannasithinon S, Choowong-In P. Clausena harmandiana root extract ameliorates Aβ 1-42 induced cognitive deficits, oxidative stress, and apoptosis in rats. BMC Complement Med Ther 2024; 24:364. [PMID: 39390478 PMCID: PMC11465876 DOI: 10.1186/s12906-024-04662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Clausena harmandiana (CH), commonly known as song fa dong, was a medicinal plant traditionally used to treat illnesses and as a health tonic. CH root extract (CHRE) exhibited various bioactivities, including neuroprotective, antioxidant, antimicrobial, antifungal, anti-inflammatory, and anti-cancer effects. However, CHRE data on neuroprotective in AD-like animal models were still scarce. OBJECTIVES This study aimed to investigate the effects of CHRE on Aβ1-42-induced cognitive deficits, free radical damage, and neuronal death in rats. METHODS Forty-eight adult male Sprague-Dawley rats (250-300 g) were classified as sham control (SC), V+Aβ, Vit C+Aβ, CHRE125+Aβ, CHRE250+Aβ, and CHRE500+Aβ (n = 8 in each group). Animals were orally administered with 0.5% sodium carboxymethylcellulose, vitamin C (200 mg/kg BW), or CHRE (125, 250, and 500 mg/kg BW) and were untreated for 35 days. On day 21, all treated rats were injected with 1 µl of aggregated Aβ1-42 (1 µg/µl) into the lateral ventricles, bilaterally, whereas untreated rats were injected with sterilized normal saline (NS). The Morris water maze test estimated the rat's learning and memory one week later. At the end of the treatment, all rats were sacrificed, and their brains were removed and divided into two hemispheres. On the left, morphological changes and neuronal density were observed in hippocampal CA1 and CA3 regions. While, on the right, changes in free radical damage markers (SOD, CAT, GPx, MDA, and Nrf2) and protein expression of active caspase-3 were evaluated in the hippocampus. RESULTS Pretreatment with CHRE at all doses could alleviate spatial learning and memory defects. CHRE also improved morphological changes and a decrease in neuronal density in CA1 and CA3 regions. Additionally, CHRE significantly increased the activities of antioxidant enzymes (SOD, CAT, GPx) and Nrf2 expression. This was coupled with significantly decreased MDA levels and active caspase-3 expression in the hippocampus of Aβ1-42-induced rats, which was similar to vitamin C exposure. CONCLUSIONS Our findings suggested that CHRE ameliorated cognitive deficits and exhibited neuroprotective effects by reducing free radical damage and mitigating neuronal abnormality and neuronal death.
Collapse
Affiliation(s)
- Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nutchareeporn Nillert
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Faculty of Nursing Sciences and Allied Health, Phetchaburi Rajabhat University, Phetchaburi, 76000, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Pannawat Choowong-In
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, 53000, Thailand.
| |
Collapse
|
3
|
Promden W, Lophaet A, Sripadung P, Sungthong B, Samsee T, Ploylearmsang C, Kijjoa A, Seephonkai P. α-Glucosidase Inhibitory Activity of Prenylated Pyranocoumarins from Clausena excavata: Mechanism of Action, ADMET and Molecular Docking. Chem Biodivers 2024; 21:e202401141. [PMID: 38923383 DOI: 10.1002/cbdv.202401141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Three naturally occurring prenylated pyranocoumarins, nordentatin (1), dentatin (2), and clausarin (3), isolated from the roots of Clausena excavata (Family Rutaceae), and O-methylclausarin (4) which was obtained by methylation of 3, were investigated for their α-glucosidase inhibitory activity. The mechanism of action and the in silico prediction of their physicochemical and ADMET properties as well as the molecular docking were also studied. Compounds 1-4 exhibited stronger α-glucosidase inhibitory activity than the positive control, acarbose, through a non-competitive mechanism. Among them, 3 exhibited the highest activity, with an IC50 of 8.36 μM, which is significantly stronger than that of acarbose (IC50=430.35 μM). The prenyl group on C-3 and the hydroxyl group on C-5 in 3 may play important roles in enhancing the activity. Calculated physicochemical and ADMET parameters of 1-4 satisfied the Lipinski's and Veber's rules. Molecular simulation analysis indicated they are promising drug candidates with no hepatotoxicity. Compound 3 exhibited potent activity in the experiment and demonstrated good drug properties based on the calculations. A molecular docking study revealed that 3 showed H-bonding and π-π stacking interactions with selective Phe321, as well as interactions with thirteen other amino acid residues of the α-glucosidase.
Collapse
Affiliation(s)
- Worrawat Promden
- Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Aphiwat Lophaet
- Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Ployvadee Sripadung
- Integrative Pharmaceuticals and Innovative of Pharmaceutical Technology Research Unit, Faculty of Pharmacy, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Bunleu Sungthong
- Integrative Pharmaceuticals and Innovative of Pharmaceutical Technology Research Unit, Faculty of Pharmacy, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Thanatcha Samsee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Chanuttha Ploylearmsang
- Social Pharmacy Research Unit, Faculty of Pharmacy, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Anake Kijjoa
- Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Prapairat Seephonkai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| |
Collapse
|
4
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
5
|
Seephonkai P, Kaewtong C, Wangchuk P, Jearawuttanakul K, Kanjanasirirat P, Borwornpinyo S, Khulmanee T, Patrapuvich R. Bioassay-Guided Isolation and Identification of Antiplasmodial Compounds from the Stem Bark of Clausena excavata. PLANTA MEDICA 2023; 89:1165-1169. [PMID: 37414059 DOI: 10.1055/a-2112-6631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Clausena excavata is a medicinal plant widely distributed in Southeast Asia. It is used for a variety of indications, including to treat malaria. In our present study, a phytochemical study of the methanol extract from the stem bark of C. excavata led to the isolation of five pyranocoumarins, nordentatin (1: ), dentatin (2: ), kinocoumarin (3: ), clausarin (4: ), and clausenidin (5: ), and a coumarin, 8-hydroxy-3″,4″-dihydrocapnolactone-2',3'-diol (6: ). The isolation of compound 6: from C. excavata and the antiplasmodial activities against a multidrug-resistant K1 strain of Plasmodium falciparum of 1, 3: , and 5: were reported for the first time. Compounds 3: and 4: exhibited potent antiplasmodial activities with EC50 values of 1.10 and 0.58 µM, respectively, while 1: and 5: had EC50 values of 5.62 and 7.15 µM, respectively. A prenyl group attached to the C-3 or C-12 position on the pyranocoumarin ring probably plays an important role on the activity. A hydroxyl group at the C-10 position is also likely to enhance the activity.
Collapse
Affiliation(s)
- Prapairat Seephonkai
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, Thailand
| | - Chatthai Kaewtong
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, Thailand
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Smithfield, Queenland, Australia
| | - Kedchin Jearawuttanakul
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tachin Khulmanee
- Drug Research Unit for Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Meepagala KM, Estep AS. Larvicidal constituents from Poncirus trifoliata root extracts. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1016-1021. [PMID: 37409987 DOI: 10.1093/jme/tjad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/13/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
In the search for effective and environmentally friendly mosquito control agents, we have examined natural sources, such as microbes and plants, and the synthetic analogs of natural products. These plants and microbes have evolved in their ecological niches to produce defensive compounds against other competing organisms in their surroundings such as microbes, plants, and insects as a means to enhance their survival. Thus, some of these plants and microbes have bioactive compounds with insecticidal, fungicidal, and phytotoxic activities. In our previous research, we successfully isolated bioactive constituents from natural sources. We have carried out synthetic modifications and total synthesis of marginally active isolated compounds to achieve significantly higher active compounds. We have focused on plants in the Rutaceae family as the members of this family are known to possess bioactive compounds with algicidal, antifungal, insecticidal, and fungicidal activities. In this article, we report the isolation and structure elucidation of mosquito larvicidal constituents from Poncirus trifoliata (Rutaceae) root extract.
Collapse
Affiliation(s)
- Kumudini M Meepagala
- USDA-ARS, Natural Products Utilization Research Unit, PO Box 1848, University, MS 38677, USA
| | - Alden S Estep
- USDA-ARS, Mosquito and Fly Research Unit, 1600 S.W. 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|
7
|
Chambon M, Herrscher C, Al Halabi D, François N, Belouzard S, Boutet S, Pham VC, Doan TMH, Séron K, Mavingui P, Litaudon M, El Kalamouni C, Apel C. New Phenolic Lipids from the Leaves of Clausena harmandiana Inhibit SARS-CoV-2 Entry into Host Cells. Molecules 2023; 28:5414. [PMID: 37513285 PMCID: PMC10384782 DOI: 10.3390/molecules28145414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Induced by the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic underlined the clear need for antivirals against coronaviruses. In an effort to identify new inhibitors of SARS-CoV-2, a screening of 824 extracts prepared from various parts of 400 plant species belonging to the Rutaceae and Annonaceae families was conducted using a cell-based HCoV-229E inhibition assay. Due to its significant activity, the ethyl acetate extract of the leaves of Clausena harmandiana was selected for further chemical and biological investigations. Mass spectrometry-guided fractionation afforded three undescribed phenolic lipids (1-3), whose structures were determined via spectroscopic analysis. The absolute configurations of 1 and 2 were determined by analyzing Mosher ester derivatives. The antiviral activity against SARS-CoV-2 was subsequently shown, with IC50 values of 0.20 and 0.05 µM for 2 and 3, respectively. The mechanism of action was further assessed, showing that both 2 and 3 are inhibitors of coronavirus entry by acting directly on the viral particle. Phenolic lipids from Clausena harmandiana might be a source of new antiviral agents against human coronaviruses.
Collapse
Affiliation(s)
- Marion Chambon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Charline Herrscher
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Dana Al Halabi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Nathan François
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université de Lille, INSERM U1019, CNRS UMR 8204, CHU Lille, 59000 Lille, France
| | - Sandrine Belouzard
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université de Lille, INSERM U1019, CNRS UMR 8204, CHU Lille, 59000 Lille, France
| | - Stéphanie Boutet
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, INRAE, Université Paris-Saclay, 78000 Versailles, France
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, CauGiay, Hanoi 10072, Vietnam
| | - Thi Mai Huong Doan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, CauGiay, Hanoi 10072, Vietnam
| | - Karin Séron
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université de Lille, INSERM U1019, CNRS UMR 8204, CHU Lille, 59000 Lille, France
| | - Patrick Mavingui
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France
| | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Abdullah H, Ismail I, Suppian R, Zakaria NM. Natural Gallic Acid and Methyl Gallate Induces Apoptosis in Hela Cells through Regulation of Intrinsic and Extrinsic Protein Expression. Int J Mol Sci 2023; 24:ijms24108495. [PMID: 37239840 DOI: 10.3390/ijms24108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Induction of apoptosis is one of the targeted approaches in cancer therapies. As previously reported, natural products can induce apoptosis in in vitro cancer treatments. However, the underlying mechanisms of cancer cell death are poorly understood. The present study aimed to elucidate cell death mechanisms of gallic acid (GA) and methyl gallate (MG) from Quercus infectoria toward human cervical cancer cell lines (HeLa). The antiproliferative activity of GA and MG was characterised by an inhibitory concentration using 50% cell populations (IC50) by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Cervical cancer cells, HeLa, were treated with GA and MG for 72 h and calculated for IC50 values. The IC50 concentration of both compounds was used to elucidate the apoptotic mechanism using acridine orange/propidium iodide (AO/PI) staining, cell cycle analysis, the Annexin-V FITC dual staining assay, apoptotic proteins expressions (p53, Bax and Bcl-2) and caspase activation analysis. GA and MG inhibited the growth of HeLa cells with an IC50 value of 10.00 ± 0.67 µg/mL and 11.00 ± 0.58 µg/mL, respectively. AO/PI staining revealed incremental apoptotic cells. Cell cycle analysis revealed an accumulation of cells at the sub-G1 phase. The Annexin-V FITC assay showed that cell populations shifted from the viable to apoptotic quadrant. Moreover, p53 and Bax were upregulated, whereas Bcl-2 was markedly downregulated. Activation of caspase 8 and 9 showed an ultimate apoptotic event in HeLa cells treated with GA and MG. In conclusion, GA and MG significantly inhibited HeLa cell growth through apoptosis induction by the activation of the cell death mechanism via extrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Hasmah Abdullah
- Faculty of Resilience, Rabdan Academy, Al Dhafeer Street, Abu Dhabi 22401, United Arab Emirates
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ilyana Ismail
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Rapeah Suppian
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Munirah Zakaria
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
9
|
Ge F, Gao X, Zhou X, Li J, Ma X, Huang M, Wuken S, Tu P, An C, Chai X. The alkaloids of Corydalis hendersonii Hemsl. contribute to the cardioprotective effect against ischemic injury in mice by attenuating cardiomyocyte apoptosis via p38 MAPK signaling pathway. Chin Med 2023; 18:29. [PMID: 36932448 PMCID: PMC10021936 DOI: 10.1186/s13020-023-00726-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND There is a characteristic Tibetan folk medicine in China named Corydalis hendersonii Hemsl. (CH) has been used for treatment of cardiovascular related diseases, called "plethora" in Tibetan medicine. Previous studies demonstrated that ethanol extract of CH showed anti-acute myocardial infarction (AMI) effect through inhibiting fibrosis and inflammation. Rich alkaloids fraction (RAF) is isolated from CH, but whether RAF possessing an equivalent effect with the CH ethanol extract and by which mechanism it protects against AMI has not yet reported. The paper aimed to study the potential role of RAF on myocardial injured mice and its underlying mechanism. MATERIALS AND METHODS Liquid chromatography mass spectrometry-ion trap-time of flight (LCMS-IT-TOF) was used to analyze the chemical profile and isolate pure compounds. The ligation of left anterior descending (LAD) of coronary artery in mice was used to evaluate the in vivo anti-AMI effect, by dividing into eight groups: Sham, Model, Fosinopril (10 mg/kg, i.g.), total extract (TE, 400 mg/kg, i.g.), poor alkaloids fraction (PAF, 300 mg/kg, i.g.), and RAF (25, 50, and 100 mg/kg, respectively, i.g.) groups. Echocardiography was used to evaluate mice heart function through the index of left ventricular end-systolic diameter (LVEDs), left ventricular end-diastolic diameter (LVEDd), fractional shortening (FS) and ejection fraction (EF). We detected the lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the serum and the plasma level of angiotensin II (AngII). The apoptosis of mice myocardial tissue was verified by TUNEL assay. The expression of p38 mitogen-activated protein kinases (p38 MAPK), Bcl-2 and Bcl-2-associated X protein (Bax) were detected through immunofluorescence staining, qRT-PCR and western blot in mice heart tissue and H9c2 cells. RESULTS Echocardiography data indicated that the values of LVEDd and LVEDs were reduced and the values of FS and EF were improved by TE and RAF significantly. RAF also decreased the levels of LDH, CK-MB and AngII and significantly inhibited inflammatory cells in the marginal zone of myocardial infarction. The TUNEL assay results showed that RAF significantly attenuated cell apoptosis. Immunofluorescence and qRT-PCR assay showed that RAF inhibited p38 MAPK, Bax, and Bcl-2 proteins in mice myocardium. Western blot results validated that the expressions of key proteins were inhibited by RAF. Also, the apoptotic cells and apoptosis-related proteins were dramatically reduced by RAF in vivo and in vitro. Besides, RAF and PAF were analyzed by LCMS-IT-TOF to identify the main compounds and to demonstrate the difference between them. The results showed that a total of 14 alkaloids were identified, which indicated that the isoquinoline alkaloids were the main ingredients in RAF may contributing to the cardioprotective effect in mice. CONCLUSIONS RAF improves cardiac function by inhibiting apoptosis via p38 MAPK signaling pathway, and RAF contributes to the effect against myocardial ischemic injury of TE in mice, which provides a substantial reference for the clinical application against ischemia heart disease and quality control of CH.
Collapse
Affiliation(s)
- Fuxing Ge
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xiaoli Gao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xiaochun Zhou
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Junjun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xiaojing Ma
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Meiwen Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Sana Wuken
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Chao An
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China.
| | - Xingyun Chai
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
| |
Collapse
|
10
|
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML. Therapeutic Effects of Coumarins with Different Substitution Patterns. Molecules 2023; 28:2413. [PMID: 36903660 PMCID: PMC10005689 DOI: 10.3390/molecules28052413] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.
Collapse
Affiliation(s)
- Virginia Flores-Morales
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
| | - Ana P. Villasana-Ruíz
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Samantha González-Delgado
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
11
|
Tanaka R, Ochiai S, Sakai A, Usuki Y, Kang B, Shinada T, Satoh T. Ligand-Dependant Selective Synthesis of Mono- and Dialkenylcarbazoles through Rhodium(III)-Catalyzed C-H Alkenylation. Chem Asian J 2023; 18:e202201210. [PMID: 36600559 DOI: 10.1002/asia.202201210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The C-H alkenylation of N-acetylcarbazoles proceeds smoothly at the C1-position in the presence of a cationic Cp*Rh(III) catalyst to produce 1-alkenylcarbazoles. The use of a cationic CpE Rh(III) catalyst enables further alkenylation to give 1,8-dialkenylcarbazoles. The direct alkenylation procedure in combination with the ready removal of the acetyl directing group provides a straightforward synthetic pathway to 1- and/or 8-alkenyl-N-H-carbazole derivatives. One of 1-alkenyl-N-H-carbazoles obtained by the present C-H alkenylation/deacetylation exhibits solvatochromism.
Collapse
Affiliation(s)
- Rikuto Tanaka
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Shiho Ochiai
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Asumi Sakai
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshinosuke Usuki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Bubwoong Kang
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tetsuro Shinada
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Tetsuya Satoh
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
12
|
Dipterocarpol in Oleoresin of Dipterocarpus alatus Attributed to Cytotoxicity and Apoptosis-Inducing Effect. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103187. [PMID: 35630669 PMCID: PMC9145408 DOI: 10.3390/molecules27103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Dipterocarpus alatus Roxb. ex G. Don is widely found in Southeast Asia. Its oleo-resin has reportedly been used in biodiesel production. Two different biodiesel production processes produce resinous byproducts, namely degumming (DG) and distillation (DT). Gas chromatography-mass spectrometry identified sesquiterpenes and triterpenes in oleo-resin, DG, and DT; and long-chain hydrocarbons in oleo-resin. High-performance liquid chromatography detected dipterocarpol as a marker compound, with the highest to lowest amounts detected in DG, DT, and oleo-resin, respectively. Oleo-resin, DG, and DT exerted more cytotoxicity than dipterocarpol, and melphalan, a chemotherapeutic drug. Oleo-resin, DG, and DT exerted cytotoxicity to a different degree in T cell leukemia (Jurkat), cervical adenocarcinoma (HeLa), and human hepatocellular carcinoma (HepG2) cells, while the highest selectivity was found in the Jurkat cells compared to the non-cancer Vero cells. Dipterocarpol exhibited the highest cytotoxicity in HepG2 cells and the lowest cytotoxicity in Jurkat cells. Oleo-resin, DG, and DT induced apoptosis in Jurkat cells. In oleo-resin, DG, and DT, dipterocarpol and other compounds may act in synergy leading to cytotoxicity and an apoptosis-inducing effect. Oleo-resin, DG, and DT could be potential sources for anticancer agents. Dipterocarpol could serve as a biomarker for follow ups on the anticancer activity of a sample from D. alatus.
Collapse
|
13
|
Banikazemi Z, Mirazimi SM, Dashti F, Mazandaranian MR, Akbari M, Morshedi K, Aslanbeigi F, Rashidian A, Chamanara M, Hamblin MR, Taghizadeh M, Mirzaei H. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? Front Oncol 2021; 11:752784. [PMID: 34707995 PMCID: PMC8542999 DOI: 10.3389/fonc.2021.752784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can be a severe burden to the health care system. Globally, the mortality rate from gastrointestinal tumors has been increasing due to the lack of adequate diagnostic, prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural product with remarkable antitumor activity, and it is widely found in various natural plant sources. Researchers have explored coumarin and its related derivatives to investigate their antitumor activity, and the potential molecular mechanisms involved. These mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis, inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity, telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential mechanisms. Consequently, drug design and discovery scientists and medicinal chemists have collaborated to identify new coumarin-related agents in order to produce more effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic effects of coumarin and its derivatives against GI cancer.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Mazandaranian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Korosh Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Pavić K, Beus M, Poje G, Uzelac L, Kralj M, Rajić Z. Synthesis and Biological Evaluation of Harmirins, Novel Harmine-Coumarin Hybrids as Potential Anticancer Agents. Molecules 2021; 26:molecules26216490. [PMID: 34770906 PMCID: PMC8587047 DOI: 10.3390/molecules26216490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide–alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the β-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent.
Collapse
Affiliation(s)
- Kristina Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia; (K.P.); (M.B.); (G.P.)
| | - Maja Beus
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia; (K.P.); (M.B.); (G.P.)
| | - Goran Poje
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia; (K.P.); (M.B.); (G.P.)
| | - Lidija Uzelac
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia; (L.U.); (M.K.)
| | - Marijeta Kralj
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia; (L.U.); (M.K.)
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia; (K.P.); (M.B.); (G.P.)
- Correspondence:
| |
Collapse
|
15
|
Song F, Liu D, Huo X, Qiu D. The anticancer activity of carbazole alkaloids. Arch Pharm (Weinheim) 2021; 355:e2100277. [PMID: 34486161 DOI: 10.1002/ardp.202100277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Chemotherapy is the first choice for the majority of cancers, but severe side effects and drug resistance restrict the actual clinical efficacy. Carbazole alkaloids, mainly from the Rutaceae family, possess favorable donor ability, good planarity, rich photophysical properties, and excellent biocompatibility. Carbazole alkaloids could not only intercalate in DNA but could also inhibit telomerase and topoisomerase and regulate protein phosphorylation. Hence, carbazole alkaloids are useful in providing lead hits/candidates for the development of novel anticancer agents. This review summarizes the research progress made regarding the anticancer properties of carbazole alkaloids, covering articles published from January 2010 to June 2021.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Dan Liu
- Dezhou Number One Middle School, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Di Qiu
- Department of Hematology, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
16
|
Zhang Z, Zhang H, Yang H, Xu Z. Heptaphylline inhibits the proliferation and epithelial to mesenchymal transition of human pancreatic cancer cells via induction of apoptosis and autophagy. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1925357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Zhongyan Zhang
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Hongyan Zhang
- Clinical Laboratory, Binzhou People’s Hospital, Binzhou, People’s Republic of China
| | - Huanlian Yang
- Department of Oncology, Binzhou People’s Hospital, Shandong, People’s Republic of China
| | - Zhenglei Xu
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| |
Collapse
|
17
|
Long S, Loureiro JB, Carvalho C, Gales L, Saraiva L, Pinto MMM, Puthongking P, Sousa E. Semi-Synthesis of Small Molecules of Aminocarbazoles: Tumor Growth Inhibition and Potential Impact on p53. Molecules 2021; 26:molecules26061637. [PMID: 33804175 PMCID: PMC7998292 DOI: 10.3390/molecules26061637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1–3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1–3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.
Collapse
Affiliation(s)
- Solida Long
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; or (M.M.M.P.)
| | - Joana B. Loureiro
- Laboratory of Microbiology (LAQV/REQUIMTE), Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.B.L.); (C.C.)
| | - Carla Carvalho
- Laboratory of Microbiology (LAQV/REQUIMTE), Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.B.L.); (C.C.)
| | - Luís Gales
- Institute for the Biomedical Science Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (i3S-IBMC), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Lucília Saraiva
- Laboratory of Microbiology (LAQV/REQUIMTE), Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.B.L.); (C.C.)
- Correspondence: (L.S.); (E.S.); Tel.: +351-2-2042-8689 (E.S.)
| | - Madalena M. M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; or (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal
| | - Ploenthip Puthongking
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; or (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal
- Correspondence: (L.S.); (E.S.); Tel.: +351-2-2042-8689 (E.S.)
| |
Collapse
|
18
|
Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem 2020; 103:104163. [DOI: 10.1016/j.bioorg.2020.104163] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
|
19
|
Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers (Basel) 2020; 12:cancers12071959. [PMID: 32707666 PMCID: PMC7409047 DOI: 10.3390/cancers12071959] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the most common causes of disease-related deaths worldwide. Despite the discovery of many chemotherapeutic drugs that inhibit uncontrolled cell division processes for the treatment of various cancers, serious side effects of these drugs are a crucial disadvantage. In addition, multi-drug resistance is another important problem in anticancer treatment. Due to problems such as cytotoxicity and drug resistance, many investigations are being conducted to discover and develop effective anticancer drugs. In recent years, researchers have focused on the anticancer activity coumarins, due to their high biological activity and low toxicity. Coumarins are commonly used in the treatment of prostate cancer, renal cell carcinoma and leukemia, and they also have the ability to counteract the side effects caused by radiotherapy. Both natural and synthetic coumarin derivatives draw attention due to their photochemotherapy and therapeutic applications in cancer. In this review, a compilation of various research reports on coumarins with anticancer activity and investigation and a review of structure-activity relationship studies on coumarin core are presented. Determination of important structural features around the coumarin core may help researchers to design and develop new analogues with a strong anticancer effect and reduce the potential side effects of existing therapeutics.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye 06100, Ankara, Turkey;
| | - Büşra Karpuz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| |
Collapse
|
20
|
Quan NV, Xuan TD, Anh LH, Tran HD. Bio-Guided Isolation of Prospective Bioactive Constituents from Roots of Clausena indica (Dalzell) Oliv. Molecules 2019; 24:E4442. [PMID: 31817276 PMCID: PMC6943736 DOI: 10.3390/molecules24244442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
Clausena indica fruits are routinely used for the culinary purpose as natural spices, whereas leaves and roots are folk medicine with various health benefits in southern China, South and Southeast Asia. In this study, the bioassay-guided fractionation by column chromatography yielded three pure compounds including dentatin, nordentatin, and clausine K and five active fractions (Re1-5) from C. indica roots. These known anticancer compounds were confirmed by X-ray diffraction, 1H-, 13C-nuclear magnetic resonance (NMR), and electrospray ionization tandem mass spectrometric (ESI-MS-MS) analyses. Meanwhile, the phytochemical constituents from fractions were identified by gas chromatography-mass spectrometry (GC-MS). The isolates, fractions' components and their biological activities were first time investigated on C. indica. By in vitro DPPH and ABTS scavenging assays, nordentatin (IC50 = 49.2 and 69.9 µg/mL, respectively) and the fraction Re4 (32.4 and 38.5 µg/mL, respectively) showed the strongest antiradical activities, whereas clausine K presented a moderate and dentatin had negligible antioxidant activity, respectively. The anti-α-amylase activity of C. indica root extracts was mainly attributed to the fraction Re2 which inactivated the enzymatic assay with IC50 of 573.8 µg/mL. Among tested samples, only nordentatin and clausine K were effective in the pancreatic elastase inhibition, however, their influences were trivial. Markedly, clausine K and Re4 performed the most remarkable tyrosinase inhibition with IC50 values of 179.5 and 243.8 µg/mL, respectively, which were in turn 4 and 3 times stronger than myricetin (IC50 = 735.6 µg/mL), a well-known tyrosinase inhibitor. This is the first report affirming clausine K to be a new strong tyrosinase inhibitor. Isolated compounds from C. indica roots were quantified by high-performance liquid chromatography (HPLC), of which, dentatin, nordentatin, and clausine K accounted for 14.74, 6.14, and 1.28 mg/g dry weight. The findings suggest that bioactive constituents from C. indica roots may be potentially employed for the development of antidiabetic, antiaging and cosmetic agents.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Department of Development Technology, Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan; (N.V.Q.); (L.H.A.)
| | - Tran Dang Xuan
- Department of Development Technology, Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan; (N.V.Q.); (L.H.A.)
| | - La Hoang Anh
- Department of Development Technology, Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan; (N.V.Q.); (L.H.A.)
| | - Hoang-Dung Tran
- Faculty of Biotechnology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 72820, Vietnam;
| |
Collapse
|
21
|
Majnooni MB, Fakhri S, Smeriglio A, Trombetta D, Croley CR, Bhattacharyya P, Sobarzo-Sánchez E, Farzaei MH, Bishayee A. Antiangiogenic Effects of Coumarins against Cancer: From Chemistry to Medicine. Molecules 2019; 24:molecules24234278. [PMID: 31771270 PMCID: PMC6930449 DOI: 10.3390/molecules24234278] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis, the process of formation and recruitment of new blood vessels from pre-existing vessels, plays an important role in the development of cancer. Therefore, the use of antiangiogenic agents is one of the most critical strategies for the treatment of cancer. In addition, the complexity of cancer pathogenicity raises the need for multi-targeting agents. Coumarins are multi-targeting natural agents belonging to the class of benzopyrones. Coumarins have several biological and pharmacological effects, including antimicrobial, antioxidant, anti-inflammation, anticoagulant, anxiolytic, analgesic, and anticancer properties. Several reports have shown that the anticancer effect of coumarins and their derivatives are mediated through targeting angiogenesis by modulating the functions of vascular endothelial growth factor as well as vascular endothelial growth factor receptor 2, which are involved in cancer pathogenesis. In the present review, we focus on the antiangiogenic effects of coumarins and related structure-activity relationships with particular emphasis on cancer.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | | | - Piyali Bhattacharyya
- Escuela de Ciencias de la Salud, Universidad Ana G. Méndez, Recinto de Gurabo, Gurabo, PR 00778, USA;
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; or
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|