1
|
Alshehri SA, Wahab S, Khalid M, Almoyad MAA. Optimization of chromatographic conditions via Box‒Behnken design in RP-HPLC-PDA method development for the estimation of folic acid and methotrexate in bulk and tablets. Heliyon 2023; 9:e20282. [PMID: 37771532 PMCID: PMC10522955 DOI: 10.1016/j.heliyon.2023.e20282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Simultaneous estimation of folic acid and methotrexate in bulk and tablet dosage form by RP-HPLC-PDA was conducted via Box‒Behnken design application. Three-factor numerical values were finalized from the graphical and numerical optimization with built-in ANOVA in BBD. Sharp and symmetric peaks were observed at 4.138 and 6.929 min for folic acid and methotrexate, respectively. The mobile phase composition was methanol and 0.1% formic acid in water with a ratio of 31:69 and a flow rate of 1.1 ml/min. Both drugs were detected at a wavelength of 291 nm. The developed method was validated according to ICH guidelines. The results of the validation parameters were within acceptable limits. Stress stability studies have been performed under acidic, alkali, oxidation, neutral and photolytic conditions. Three different brand-marketed tablets were assessed with the developed method (MGXT, FOLTNAX and TRUXOFOL). In the tablet formulations, chromatogram percentages of folic acid and methotrexate were calculated at 99.13% and 99.50 in MGXT, 99.17% and 99.47 in FOLTNAX, and 99.91 and 100.05 in TRUXOFOL.
Collapse
Affiliation(s)
- Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Khamis Mushyt, PO Box. 4536, ZIP., 61412, Saudi Arabia
| |
Collapse
|
2
|
Ganesh PS, Govindasamy M, Kim SY, Choi DS, Ko HU, Alshgari RA, Huang CH. Synergetic effects of Mo 2C sphere/SCN nanocatalysts interface for nanomolar detection of uric acid and folic acid in presence of interferences. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114694. [PMID: 36857924 DOI: 10.1016/j.ecoenv.2023.114694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Till to date, the application of sulfur-doped graphitic carbon nitride supported transition metal carbide interface for electrochemical sensor fabrication was less explored. In this work, we designed a simple synthesis of molybdenum carbide sphere embedded sulfur doped graphitic carbon nitride (Mo2C/SCN) catalyst for the nanomolar electrochemical sensor application. The synthesized Mo2C/SCN nanocatalyst was systematically characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with elemental mapping. The SEM images show that the porous SCN network adhered uniformly on Mo2C, causing a loss of crystallinity in the diffractogram. The corresponding elemental mapping of Mo2C/SCN shows distinct peaks for carbon (41.47%), nitrogen (32.54%), sulfur (1.37%), and molybdenum (24.62%) with no additional impurity peaks, reflecting the successful synthesis. Later, the glassy carbon electrode (GCE) was modified by Mo2C/SCN nanocatalyst for simultaneous sensing of uric acid (UA) and folic acid (FA). The fabricated Mo2C/SCN/GCE is capable of simultaneous and interference free electrochemical detection of UA and FA in a binary mixture. The limit of detection (LOD) calculated at Mo2C/SCN/GCE for UA and FA was 21.5 nM (0.09 - 47.0 μM) and 14.7 nM (0.09 - 167.25 μM) respectively by differential pulse voltammetric (DPV) technique. The presence of interferons has no significant effect on the sensor's performance, making it suitable for real sample analysis. The present method can be extended to fabricate an electrochemical sensor for various molecules.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Mani Govindasamy
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Full-time faculty, International PhD Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea.
| | - Dong-Soo Choi
- Smart Interface and Extended Reality Laboratory, Department of Computer Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hyun-U Ko
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | | | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
3
|
Jeličić ML, Amidžić Klarić D, Kovačić J, Verbanac D, Mornar A. Accessing Lipophilicity and Biomimetic Chromatography Profile of Biologically Active Ingredients of Botanicals Used in the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2022; 15:ph15080965. [PMID: 36015114 PMCID: PMC9413514 DOI: 10.3390/ph15080965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, various procedures have been compared for the determination of lipophilicity, hydrophobicity, and plasma protein binding of curcuminoids, boswellic acids, andrographolides, and piperine as biologically active ingredients of botanicals used in IBD treatment. Our results have shown that IAM-HPLC assay is the most suitable one for lipophilicity determination of all analytes regardless of their class and botanical source. HSA-HPAC and AGP-HPAC assays revealed that all investigated compounds have a higher affinity for HSA which is the most abundant protein in human plasma. The high affinity of biologically active compounds to all biological structures (phospholipids and proteins) admonishes that their small portion is available for therapeutic effects in IBD patients. Our experimental research is complemented by various theoretical approaches based on different algorithms for pharmacokinetic properties prediction. The similarities between experimental and calculated values were evaluated using PCA and CA as a statistical tool. The statistical analysis implies that plasma protein binding is a complex process, and theoretical approaches still cannot fully replace experimental ones.
Collapse
Affiliation(s)
- Mario-Livio Jeličić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Daniela Amidžić Klarić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Jelena Kovačić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Ana Mornar
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
4
|
Olmo F, Rodriguez A, Colina A, Heras A. UV/Vis absorption spectroelectrochemistry of folic acid. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05026-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractUV/Vis absorption spectroelectrochemistry is a very promising analytical technique due to the complementary information that is simultaneously obtained from electrochemistry and spectroscopy. In this work, this technique is used in a parallel configuration to study the oxidation of folic acid in alkaline medium. Herein, UV/Vis absorption spectroelectrochemistry has been used to detect both the oxidation products and the folic acid consumed at the electrode/solution interface, allowing us to develop an analytical protocol to quantify vitamin B9 in pharmaceutical tablets. Linear ranges of three orders of magnitude have been achieved in basic medium (pH = 12.9), obtaining high repeatability and low detection limits. The spectroelectrochemical determination of folic acid in pharmaceutical tablets at alkaline pH values is particularly interesting because of the changes that occur in the optical signal during the electrochemical oxidation of FA, providing results with very good figures of merit and demonstrating the utility and versatility of this hyphenated technique, UV/Vis absorption spectroelectrochemistry.
Collapse
|
5
|
Brusač E, Jeličić ML, AmidŽić Klarić D, Nigović B, Keser S, Mornar A. Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1422-1431. [PMID: 33687392 DOI: 10.1039/d1ay00294e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adherence in chronic diseases is a major problem which can be combated by prescribing fixed-dose combinations in the therapy of the disease. Thus, a combination of azathioprine and folic acid in the treatment of inflammatory bowel disease is highly required, but prior to formulation development, chemical compatibility of the two drugs needs to be investigated. In this work, differential scanning calorimetry, isothermal stress testing, in vitro dissolution and forced degradation studies were utilized to investigate compatibility. Moreover, a stability-indicating HPLC-DAD method for the determination of parent drugs and five of their impurities was developed, validated and applied to the in-house sample. Compatibility testing revealed no noteworthy interactions of the two drug substances. Furthermore, forced degradation showed no substantial differences between the degradation profiles of each active pharmaceutical ingredient, their mixture and the in-house sample, further reinforcing the claim of compatibility. Lastly, the in-house sample was analyzed: it was shown to conform to the requirements of relevant regulatory documents for all the investigated analytes, demonstrating the method's viability for use in formulation and process development. Our results give way to the possibility of realization of said fixed-dose combination.
Collapse
Affiliation(s)
- Edvin Brusač
- University of Zagreb Faculty of Pharmacy of Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
6
|
Brusač E, Jeličić ML, Cvetnić M, Amidžić Klarić D, Nigović B, Mornar A. A Comprehensive Approach to Compatibility Testing Using Chromatographic, Thermal and Spectroscopic Techniques: Evaluation of Potential for a Monolayer Fixed-Dose Combination of 6-Mercaptopurine and Folic Acid. Pharmaceuticals (Basel) 2021; 14:ph14030274. [PMID: 33802871 PMCID: PMC8002671 DOI: 10.3390/ph14030274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, a systematical compatibility investigation of 6-mercaptopurine and folic acid, two commonly used medications in the treatment of inflammatory bowel disease, for the needs of a fixed-dose combination development strategy is shown. Various techniques and approaches, such as differential scanning calorimetry, isothermal stress testing, attenuated total reflectance–Fourier-transform infrared spectroscopy, dissolution medium stability and forced degradation studies, were used to elucidate the possible interactions from different aspects. The results predominantly point to the absence of physicochemical interactions between the examined substances in a variety of possible conditions. However, the forced degradation of the blend of substances and excipients in basic conditions showed a drastic degradation of 6-mercaptopurine, signifying that attention needs to be directed to the careful selection of the excipients for the formulation. To sum up, our findings indicate that a fixed-dose combination of 6-mercaptopurine and folic acid could be produced using one formulation blend, immensely simplifying its manufacture.
Collapse
Affiliation(s)
- Edvin Brusač
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (E.B.); (M.-L.J.); (D.A.K.); (B.N.)
| | - Mario-Livio Jeličić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (E.B.); (M.-L.J.); (D.A.K.); (B.N.)
| | - Matija Cvetnić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| | - Daniela Amidžić Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (E.B.); (M.-L.J.); (D.A.K.); (B.N.)
| | - Biljana Nigović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (E.B.); (M.-L.J.); (D.A.K.); (B.N.)
| | - Ana Mornar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (E.B.); (M.-L.J.); (D.A.K.); (B.N.)
- Correspondence: ; Tel.: +385-1-481-8288
| |
Collapse
|
7
|
Highly sensitive folic acid colorimetric sensor enabled by free-standing molecularly imprinted photonic hydrogels. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Jeličić ML, Brusač E, Klarić DA, Nigović B, Turk N, Mornar A. A chromatographic approach to development of 5-aminosalicylate/folic acid fixed-dose combinations for treatment of Crohn's disease and ulcerative colitis. Sci Rep 2020; 10:20838. [PMID: 33257796 PMCID: PMC7705649 DOI: 10.1038/s41598-020-77654-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Medication adherence is an important factor in inflammatory bowel disease therapy, which includes regular supplementation of malabsorbed vitamins. Absorption of folic acid is limited due to the damaging of the gastrointestinal tract, which can increase the chances to develop megaloblastic anaemia and colorectal cancer. In this work, 5-aminosalicylates (mesalazine, balsalazide, sulfasalazine and olsalazine) and folic acid were characterized regarding their pharmacokinetic related properties (hydrophobicity, phospholipid and plasma protein binding) using the biomimetic chromatographic approach. Despite the high binding percentage of 5-aminosalicylates for human serum albumin (> 61.44%), results have shown that folic acid binding to human serum albumin protein is far greater (69.40%) compared to α1-acid-glycoprotein (3.45%). Frontal analysis and zonal elution studies were conducted to provide an insight into the binding of folic acid to human serum albumin and potential competition with 5-aminosalicylates. The analytical method for the simultaneous determination of assay in proposed fixed-dose combinations was developed and validated according to ICH Q2 (R1) and FDA method validation guidelines. Separation of all compounds was achieved within 16 min with satisfactory resolution (Rs > 3.67) using the XBridge Phenyl column (150 × 4.6 mm, 3.5 µm). High linearity (r > 0.9997) and precision (RSD < 2.29%) was obtained, whilst all recoveries were within the regulatory defined range by British (100.0 ± 5.0%) and United States Pharmacopeia (100.0 ± 10.0%).
Collapse
Affiliation(s)
- Mario-Livio Jeličić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Edvin Brusač
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Daniela Amidžić Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Biljana Nigović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Nikša Turk
- Clinical Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia
| | - Ana Mornar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
9
|
Recent Trends in Pharmaceutical Analytical Chemistry. Molecules 2020; 25:molecules25163560. [PMID: 32764423 PMCID: PMC7465079 DOI: 10.3390/molecules25163560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
|