1
|
Kong ASY, Tan YC, Thew HY, Lai KS, Lim SHE, Maran S, Loh HS. In-silico analysis of nsSNPs in BCL-2 family proteins: Implications for colorectal cancer pathogenesis and therapeutics. Biochem Biophys Rep 2025; 42:101957. [PMID: 40207085 PMCID: PMC11979393 DOI: 10.1016/j.bbrep.2025.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 04/11/2025] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease characterized by abnormal cell proliferation in the colon and rectum. The BCL-2 family proteins are implicated in CRC pathogenesis, yet the impacts of genetic variations within these proteins remains elusive. This in-silico study employs diverse sequence- and structure-based bioinformatics tools to identify potentially pathogenic nonsynonymous single nucleotide polymorphisms (nsSNPs) in BCL-2 family proteins. Leveraging computational tools including SIFT, PolyPhen-2, SNPs&GO, PhD-SNP, PANTHER, and Condel, 94 nsSNPs were predicted as deleterious, damaging, and disease-associated by at least five tools. Stability analysis with I-Mutant2.0, MutPred, and PredictSNP further identified 31 nsSNPs that reduce protein stability. Conservation analysis highlighted highly functional, exposed variants (rs960653284, rs758817904, rs1466732626, rs569276903, rs746711568, rs764437421, rs779690846, and rs2038330314) and structural, buried variants (rs376149674, rs1375767408, rs1582066443, rs367558446, rs367558446, rs1319541919, and rs1370070128). To explore the functional effects of these mutations, molecular docking and molecular dynamics simulations were conducted. G233D (rs376149674) and R12G (rs960653284) mutations in the BCL2 protein exhibited the greatest differences in docking scores with d-α-Tocopherol and Tocotrienol, suggesting enhanced protein-ligand interactions. The simulations revealed that d-α-Tocopherol and Tocotrienol (strong binders) contributed to greater stability of BCL-2 family proteins, while Fluorouracil, though weaker, still demonstrated selective binding stability. This work represents the first comprehensive computational analysis of functional nsSNPs in BCL-2 family proteins, providing insights into their roles in CRC pathogenesis. While these findings demand experimental validation, they hold great promise for guiding future large-scale population studies, facilitating drug repurposing efforts, and advancing the development of targeted diagnostic and therapeutic modalities for CRC.
Collapse
Affiliation(s)
- Amanda Shen-Yee Kong
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yong Chiang Tan
- International Medical University, 57000, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Hin-Yee Thew
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, 41012, United Arab Emirates
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, 41012, United Arab Emirates
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Hwei-San Loh
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
The Role of BCL-2 and PD-1/PD-L1 Pathway in Pathogenesis of Myelodysplastic Syndromes. Int J Mol Sci 2023; 24:ijms24054708. [PMID: 36902139 PMCID: PMC10003626 DOI: 10.3390/ijms24054708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Myelodysplastic syndromes (MDSs) belong to a group of clonal bone marrow malignancies. In light of the emergence of new molecules, a significant contribution to the understanding of the pathogenesis of the disease is the study of the B-cell CLL/lymphoma 2 (BCL-2) and the programmed cell death receptor 1 (PD-1) protein and its ligands. BCL-2-family proteins are involved in the regulation of the intrinsic apoptosis pathway. Disruptions in their interactions promote the progression and resistance of MDSs. They have become an important target for specific drugs. Bone marrow cytoarchitecture may prove to be a predictor of response to its use. The challenge is the observed resistance to venetoclax, for which the MCL-1 protein may be largely responsible. Molecules with the potential to break the associated resistance include S63845, S64315, chidamide and arsenic trioxide (ATO). Despite promising in vitro studies, the role of PD-1/PD-L1 pathway inhibitors has not yet been established. Knockdown of the PD-L1 gene in preclinical studies was associated with increased levels of BCL-2 and MCL-1 in lymphocytes T, which could increase their survival and promote tumor apoptosis. A trial (NCT03969446) is currently underway to combine inhibitors from both groups.
Collapse
|
3
|
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12:985363. [PMID: 36313628 PMCID: PMC9597512 DOI: 10.3389/fonc.2022.985363] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
Collapse
Affiliation(s)
- Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Caro-Gómez LA, Rosas-Trigueros JL, Mixcoha E, Zamorano-Carrillo A, Martínez-Martínez J, Benítez-Cardoza CG. Anti-apoptotic Bcl-2 protein in apo and holo conformation anchored to the membrane: comparative molecular dynamics simulations. J Biomol Struct Dyn 2022:1-15. [DOI: 10.1080/07391102.2022.2101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Jorge L. Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, SEPI de la ESCOM del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Mixcoha
- Catedrático-CONACYT Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, Mexico
| | - Absalom Zamorano-Carrillo
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | |
Collapse
|
5
|
López-Hidalgo M, Caro-Gómez LA, Romo-Rodríguez R, Herrera-Zuñiga LD, Anaya-Reyes M, Rosas-Trigueros JL, Benítez-Cardoza CG. Atomistic mechanism of leptin and leptin-receptor association. J Biomol Struct Dyn 2022; 41:2231-2248. [PMID: 35075977 DOI: 10.1080/07391102.2022.2029568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The leptin-leptin receptor complex is at the very core of energy homeostasis and immune system regulation, among many other functions. In this work, we built homology models of leptin and the leptin binding domain (LBD) of the receptor from humans and mice. Docking analyses were used to obtain the coordinates of the native leptin-LBD complexes and a mixed heterodimer formed by human leptin and mouse LBD. Molecular dynamics (MD) simulations were performed using all models (monomers and heterodimers) as initial coordinates and the GROMACS program. The overall structural and dynamical behaviors are similar for the three complexes. Upon MD simulations, several new interactions appear. In particular, hydrophobic interactions, with more than 90% persistence, seem to be the most relevant for the stability of the dimers, as well as the pair formed by Asp85Lep and Arg468LBD. This in silico analysis provides structural and dynamical information, at the atomistic level, about the mechanism of leptin-LBD complex formation and leptin receptor activation. This knowledge might be used in the rational drug design of therapeutics to modulate leptin signaling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marisol López-Hidalgo
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis A Caro-Gómez
- Tecnológico de Estudios Superiores de Huixquilucan, Subdirección de Estudios Profesionales, State of Mexico, Mexico
| | - Rubí Romo-Rodríguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México.,Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Leonardo D Herrera-Zuñiga
- Tecnológico de Estudios Superiores de Huixquilucan, Subdirección de Estudios Profesionales, State of Mexico, Mexico
| | - Maricruz Anaya-Reyes
- Departamento de Investigación Clínica, Productos Medix, S.A. de C.V, Mexico City, Mexico
| | - Jorge L Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, SEPI de la ESCOM del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia G Benítez-Cardoza
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Cayetano-Cruz M, Caro-Gómez LA, Plascencia-Espinosa M, Santiago-Hernández A, Benítez-Cardoza CG, Campos JE, Hidalgo-Lara ME, Zamorano-Carrillo A. Effect of the single mutation N9Y on the catalytical properties of xylanase Xyn11A from Cellulomonas uda: a biochemical and molecular dynamic simulation analysis. Biosci Biotechnol Biochem 2021; 85:1971-1985. [PMID: 34232281 DOI: 10.1093/bbb/zbab124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Cellulomonas uda produces Xyn11A, moderately thermostable xylanase, with optimal activity at 50 °C and pH 6.5. An improvement in the biochemical properties of Xyn11A was achieved by site-directed mutagenesis approach. Wild-type xylanase, Xyn11A-WT, and its mutant Xyn11A-N9Y were expressed in Escherichia coli, and then both enzymes were purified and characterized. Xyn11A-N9Y displayed optimal activity at 60 °C and pH 7.5, an upward shift of 10 ºC in the optimum temperature, and an upward shift of one unit in optimum pH; also, it manifested an 11-fold increase in thermal stability at 60 ºC, compared to that displayed by Xyn11A-WT. Molecular dynamics (MD) simulations of Xyn11A-WT and Xyn11A-N9Y suggest the substitution N9Y leads to an array of secondary structure changes at the N-terminal end and an increase in the number of hydrogen bonds in Xyn11A-N9Y. Based on the significant improvements, Xyn11A-N9Y may be considered as a candidate for several biotechnological applications.
Collapse
Affiliation(s)
- Maribel Cayetano-Cruz
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, D.F. CP 07360, México
| | - Luis A Caro-Gómez
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Miguel Plascencia-Espinosa
- CIBA-Instituto Politécnico Nacional, Km 1.5 Carretera Estatal Tecuexcomac-Tepetitla, 90700, Tepetitla, Tlaxcala, México
| | - Alejandro Santiago-Hernández
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, D.F. CP 07360, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Jorge E Campos
- Laboratorio de Bioquímica Molecular, UBIPRO, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, CP 54090, Tlalnepantla de Baz, Estado de México, México
| | - María Eugenia Hidalgo-Lara
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, D.F. CP 07360, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| |
Collapse
|
7
|
Bian Q, Zhou P, Yao Z, Li M, Yu H, Ye L. Heterologous biosynthesis of lutein in S. cerevisiae enabled by temporospatial pathway control. Metab Eng 2021; 67:19-28. [PMID: 34077803 DOI: 10.1016/j.ymben.2021.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
The market-expanding lutein is currently mainly supplied by plant extraction, with microbial fermentation using engineered cell factory emerging as a promising substitution. During construction of lutein-producing yeast, α-carotene formation through asymmetric ε- and β-cyclization of lycopene was found as the main limiting step, attributed to intra-pathway competition of the cyclases for lycopene, forming β-carotene instead. To solve this problem, temperature-responsive expression of β-cyclase was coupled to constitutive expression of ε-cyclase for flux redirection to α-carotene by allowing ε-cyclization to occur first. Meanwhile, the ε-cyclase was engineered and re-localized to the plasma membrane for further flux reinforcement towards α-carotene. Finally, pathway extension with proper combination of carotenoid hydroxylases enabled lutein (438 μg/g dry cells) biosynthesis in S. cerevisiae. The success of heterologous lutein biosynthesis in yeast suggested temporospatial pathway control as a potential strategy in solving intra-pathway competitions, and may also be applicable for promoting the biosynthesis of other natural products.
Collapse
Affiliation(s)
- Qi Bian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
8
|
Mushtaq AU, Ådén J, Clifton LA, Wacklin-Knecht H, Campana M, Dingeldein APG, Persson C, Sparrman T, Gröbner G. Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation. Commun Biol 2021; 4:507. [PMID: 33907308 PMCID: PMC8079415 DOI: 10.1038/s42003-021-02032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, ESS, Lund, Sweden
- Department of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Mario Campana
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | | | - Cecilia Persson
- The Swedish NMR Center, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|