1
|
Makhumbila P, Rauwane M, Muedi H, Madala NE, Figlan S. Exploring associations between metabolites and gene transcripts of common bean (Phaseolus vulgaris L.) in response to rust (Uromyces appendiculatus) infection. BMC PLANT BIOLOGY 2025; 25:568. [PMID: 40307747 PMCID: PMC12044953 DOI: 10.1186/s12870-025-06584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
Common bean (Phaseolus vulgaris L.) faces escalating challenges resulting from the increasing prevalence of fungal pathogens such as rust caused by Uromyces appendiculatus, threatening yields and quality of the crop. Understanding P. vulgaris' disease response mechanisms is pivotal for the crop's resilience and food security. Current scientific understanding of underlying molecular mechanisms of P. vulgaris to U. appendiculatus is limited, particularly with respect to specialised molecular data, including metabolite profiles and gene expression. There is a significant knowledge gap in explicating precise metabolomic and transcriptional changes that occur in P. vulgaris upon interaction with U. appendiculatus, which limits strategies aimed at enhancing pathogen resistance. In this study, biological stress response strategies of common bean to the rust pathogen were elucidated through a combined metabolomic and transcriptomic profiling approach. Our findings revealed that U. appendiculatus triggered diverse levels of 30 known metabolites, primarily flavonoids, lipids, nucleosides, and phenylpropanoids among others. Transcriptome sequencing detected over 3000 differentially expressed genes, including multiple transcription factor families such as heat shock proteins (HSPs), cytochrome P450 monooxygenases (CYP), terpene synthases and WRKY transcription factors (TFs) among others. Integrative metabolome and transcriptome analysis showed that rust infection enriched metabolomic pathways, biosynthesis of secondary metabolites, protein processing in the endoplasmic reticulum, and purine metabolism among others. The metabolome and transcriptome integration approach employed in this study provides insights on molecular mechanisms underlying U. appendiculatus response in P. vulgaris' key developmental stages.
Collapse
Affiliation(s)
- Penny Makhumbila
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort, 1709, South Africa.
| | - Molemi Rauwane
- Department of Botany, Nelson Mandela University, South Campus, University Way, Summerstrand, Port Elizabeth, 6001, South Africa
| | - Hangwani Muedi
- Research Support Services, North-West Provincial Department of Agriculture and Rural Development, 114 Chris Hani Street, Potchefstroom, 2531, South Africa
| | - Ntakadzeni E Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, University Rd, Thohoyandou, 0950, South Africa
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort, 1709, South Africa
| |
Collapse
|
2
|
Liu X, Liu H, Yin F, Li Y, Jiang J, Xiao Y, Wu Y, Qin Z. Phytopathogenic Fungicidal Activity and Mechanism Approach of Three Kinds of Triphenylphosphonium Salts. J Fungi (Basel) 2024; 10:450. [PMID: 39057335 PMCID: PMC11278366 DOI: 10.3390/jof10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
The triphenylphosphonium (TPP) cation has been widely used as a carrier for mitochondria-targeting molecules. We synthesized two commonly employed targeting systems, namely, ω-triphenylphosphonium fatty acids (group 2) and ω-triphenylphosphonium fatty alcohols (group 3), to assess the impact of the TPP module on the biological efficacy of mitochondria-targeting molecules. We evaluated their fungicidal activities against nine plant pathogenic fungi in comparison to alkyl-1-triphenylphosphonium compounds (group 1). All three compound groups exhibited fungicidal activity and displayed a distinct "cut-off effect", which depended on the length of the carbon chain. Specifically, group 1 compounds showed a cut-off point at C10 (compound 1-7), while group 2 and 3 compounds exhibited cut-off points at C15 (compound 2-12) and C14 (compound 3-11), respectively. Notably, group 1 compounds displayed significantly higher fungicidal activity compared to groups 2 and 3. However, group 2 and 3 compounds showed similar activity to each other, although susceptibility may depend on the pathogen tested. Initial investigations into the mechanism of action of the most active compounds suggested that their fungicidal performance may be primarily attributed to their ability to damage the membrane, as well as uncoupling activity and inhibition of fungal respiration. Our findings suggest that the TPP module used in delivery systems as aliphatic acyl or alkoxyl derivatives with carbon chains length < 10 will contribute negligible fungicidal activity to the TPP-conjugate compared to the effect of high level of accumulation in mitochondria due to its mitochondria-targeting ability. These results provide a foundation for utilizing TPP as a promising carrier in the design and development of more effective mitochondria-targeting drugs or pesticides.
Collapse
Affiliation(s)
- Xuelian Liu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Huihui Liu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Fahong Yin
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Jiazhen Jiang
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yanhua Wu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| |
Collapse
|
3
|
Wang J, Liu X, Yin F, Xu Y, Fu B, Li J, Qin Z. Triphenylphosphonium (TPP)-Conjugated Quinolone Analogs Displayed Significantly Enhanced Fungicidal Activity Superior to Its Parent Molecule. J Fungi (Basel) 2023; 9:685. [PMID: 37367621 DOI: 10.3390/jof9060685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Although 1-hydroxy-4-quinolone derivatives, such as 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), aurachin C, and floxacrine, have been reported as effective cytochrome bc1 complex inhibitors, the bioactivity of these products is not ideal, presumably due to their low bioavailability in tissues, particularly their poor solubility and low mitochondrial accumulation. In order to overcome the drawbacks of these compounds and develop their use as agricultural fungicides acting by cytochrome bc1 inhibition, in this study, three novel mitochondria-targeting quinolone analogs (mitoQNOs) were designed and synthesized by conjugating triphenylphosphonium (TPP) with quinolone. They exhibited greatly enhanced fungicidal activity compared to the parent molecule, especially mitoQNO11, which showed high antifungal activity against Phytophthora capsici and Sclerotinia sclerotiorum with EC50 values of 7.42 and 4.43 μmol/L, respectively. In addition, mitoQNO11 could inhibit the activity of the cytochrome bc1 complex of P. capsici in a dose-dependent manner and effectively depress its respiration and ATP production. The greatly decreased mitochondrial membrane potential and massively generated reactive oxygen species (ROS) strongly suggested that the inhibition of complex III led to the leakage of free electrons, which resulted in the damage of the pathogen cell structure. The results of this study indicated that TPP-conjugated QNOs might be used as agricultural fungicides by conjugating them with TPP.
Collapse
Affiliation(s)
- Jiayao Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xuelian Liu
- Pharmaceutical Institute, Xinjiang University, Urumqi 830046, China
| | - Fahong Yin
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Bin Fu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jiaqi Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Liu X, Tang D, Yin F, Wang J, Zhang X, Xiao Y, Li JQ, Qin Z. Mitochondrion-Targeted Triphenylphosphonium-Based Kresoxim-Methyl Analogues: Synthesis, Fungicidal Activity, and Action Mechanism Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13563-13573. [PMID: 36223487 DOI: 10.1021/acs.jafc.2c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
β-Methoxyacrylate fungicides as complex III Qo site inhibitors play a crucial role in the control of crop diseases. In this study, the triphenylphosphonium (TPP)-driven mitochondrion-targeting strategy was used to modify the kresoxim-methyl scaffold at the toxicophore or side chain to develop novel mitochondrion-targeted QoI fungicides. These kresoxim-methyl analogues exhibited different fungicidal activities, depending on the position of TPP conjugation and the linker length. Among them, 2A-5 and 2C-4 showed excellent characteristics superior to kresoxim-methyl as candidate fungicides, in which the activity enhancement against Phytophthora capsici was the most remarkable, with an EC50 value of about 5 μM. Notably, both hyphal and zoospore structures of the pathogens were severely damaged after treatment with them. The action mechanism approach revealed that they might cause a significant decrease in ATP synthesis and ROS outbreak in different ways. The results also provided a new insight into the contribution of targeting group TPP to the fungicidal activity in TPP-driven fungicides.
Collapse
Affiliation(s)
- Xuelian Liu
- College of Science, China Agricultural University, Beijing100193, China
| | - Dachao Tang
- College of Science, China Agricultural University, Beijing100193, China
| | - Fahong Yin
- College of Science, China Agricultural University, Beijing100193, China
| | - Jiayao Wang
- College of Science, China Agricultural University, Beijing100193, China
| | - Xueqin Zhang
- College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing100193, China
| | - Jia-Qi Li
- College of Science, China Agricultural University, Beijing100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing100193, China
| |
Collapse
|
5
|
Uclaray CC, Vidallon MLP, Almeda RA, Cumagun CJR, Reyes CT, Rodriguez EB. Encapsulation of wild oregano, Plectranthus amboinicus (Lour.) Spreng, phenolic extract in baker's yeast for the postharvest control of anthracnose in papaya. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4657-4667. [PMID: 35178723 DOI: 10.1002/jsfa.11826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anthracnose caused by Colletotrichum gloeosporioides is considered as a major postharvest disease affecting many fruits. This plant disease is traditionally managed with synthetic fungicides, which are generally toxic and are linked to pathogen resistance. Recently, microencapsulated bioactives have been developed as potential alternative strategies to these methods, while utilizing natural fungicides and other phytochemicals. Wild oregano, Plectranthus amboinicus (Lour.) Spreng, contains potent antimicrobial phenolics, but these compounds are volatile and relatively unstable, which limits their efficacy during application. Herein, a baker's yeast microencapsulation system was applied to improve the stability of wild oregano phenolic extract (WOPE) and enhance its antifungal activity against anthracnose. RESULTS Encapsulation of WOPE in plasmolyzed yeast cells afforded a high encapsulation efficiency (93%) and yielded WOPE-loaded yeast microcapsules (WLYMs) with an average diameter of 2.65 μm. Storage stability studies showed WLYMs are stable for at least 4 months. A 24 -h in vitro release experiment showed that WLYMs had an initial burst release upon redispersion in water, followed by a controlled release to about 80% of the loaded WOPE. Upon application as a spray-type postharvest treatment for papaya, WLYMs exhibited a significantly improved mycelial inhibitory action against C. gloeosporioides and greatly reduced the anthracnose symptoms in papaya fruits. CONCLUSION This study presented a yeast microencapsulation system that can effectively stabilize WOPE and enhance its antifungal activity, making this microparticle formulation a promising environmentally safe postharvest treatment option to combat anthracnose symptoms in papaya fruits. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristina C Uclaray
- Institute of Chemistry, College of Arts and Science, University of the Philippines, Los Baños, Philippines
| | - Mark Louis P Vidallon
- Institute of Chemistry, College of Arts and Science, University of the Philippines, Los Baños, Philippines
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Ronaniel A Almeda
- Institute of Agricultural and Bio-Systems Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines, Los Baños, Philippines
| | - Christian Joseph R Cumagun
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
- University of Idaho, Parma Research and Extension Center, 29603 U of I Lane, Parma, Idaho, USA
| | - Charisse T Reyes
- School of Chemistry, Monash University, Clayton, VIC, Australia
- Faculty of Education, University of the Philippines Open University, Los Baños, Philippines
| | - Evelyn B Rodriguez
- Institute of Chemistry, College of Arts and Science, University of the Philippines, Los Baños, Philippines
| |
Collapse
|
6
|
Lee KD, Sun HJ, Lee M, Chun J, Shin TS, Choi KS, Shim SY. Ethanolic Extract of Pancake Mixture Powder Supplemented with Helianthus tuberosus Enhances Antidiabetic Effects via Inhibiting Inflammatory Mediator NO Production. MICROBIOLOGY AND BIOTECHNOLOGY LETTERS 2022; 50:228-234. [DOI: 10.48022/mbl.2109.09009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 01/03/2025]
Affiliation(s)
- Kyoung-Dong Lee
- Department of Oriental Medicine Materials, College of Oriental Medicine, Dongsin University, Naju 58245, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Mina Lee
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
7
|
Plant-Derived Protectants in Combating Soil-Borne Fungal Infections in Tomato and Chilli. J Fungi (Basel) 2022; 8:jof8020213. [PMID: 35205967 PMCID: PMC8878687 DOI: 10.3390/jof8020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/17/2022] Open
Abstract
Fungal infections transmitted through the soil continue to pose a threat to a variety of horticultural and agricultural products, including tomato and chilli. The indiscriminate use of synthetic pesticides has resulted in a slew of unintended consequences for the surrounding ecosystem. To achieve sustainable productivity, experts have turned their attention to natural alternatives. Due to their biodegradability, varied mode of action, and minimal toxicity to non-target organisms, plant-derived protectants (PDPs) are being hailed as a superior replacement for plant pesticides. This review outlines PDPs’ critical functions (including formulations) in regulating soil-borne fungal diseases, keeping tomato and chilli pathogens in the spotlight. An in-depth examination of the impact of PDPs on pathogen activity will be a priority. Additionally, this review emphasises the advantages of the in silico approach over conventional approaches for screening plants’ secondary metabolites with target-specific fungicidal activity. Despite the recent advances in our understanding of the fungicidal capabilities of various PDPs, it is taking much longer for that information to be applied to commercially available pesticides. The restrictions to solving this issue can be lifted by breakthroughs in formulation technology, governmental support, and a willingness to pursue green alternatives among farmers and industries.
Collapse
|
8
|
Zhao Y, Wang Q, Wu X, Jiang M, Jin H, Tao K, Hou T. Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. PEST MANAGEMENT SCIENCE 2021; 77:3469-3483. [PMID: 33826225 DOI: 10.1002/ps.6400] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice sheath blight caused by Rhizoctonia solani is a devastating disease of rice in China. However, indiscriminate use of chemical fungicides applied to control the disease raise major environmental and food safety issues. Ecofriendly biocontrol alternatives are urgently needed. Eugenol, one of the main ingredients in Syzygium aromaticum, has attracted much attention owing to its antifungal properties. However, its mode of action is still not clear. Herein, the antifungal activity and mode of action of eugenol against R. solani were investigated. RESULTS Results confirmed that the mycelia of R. solani treated with eugenol shrank and became dehydrated, the cytoplasmic wall separated, and the vacuoles and mitochondria decreased or dissolved. Moreover, we found that eugenol downregulated expression of C-4 methyl sterol oxidase, inhibited synthesis of ergosterol, increased membrane permeability and impaired the transportation of amino acids and glucose across the cell membrane. In addition, eugenol decreased the mitochondrial membrane potential and initiated an oxidative stress reaction by increasing reactive oxygen species and malondialdehyde, which together with membrane damage contribute to the antifungal activity of eugenol. Meanwhile, eugenol might inhibit R. solani by affecting oxidative phosphorylation and the tricarboxylic acid cycle (TCA cycle). CONCLUSION In view of its multitarget properties against R. solani, eugenol provides an alternative approach to chemical control strategies against rice sheath blight. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongtian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- College of Agroforestry and Health, Sichuan Radio and TV University, Chengdu, China
| | - Qi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xia Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingfang Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ethyl Acetate Fraction of Helianthus tuberosus L. Induces Anti-Diabetic, and Wound-Healing Activities in Insulin-Resistant Human Liver Cancer and Mouse Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10010099. [PMID: 33445702 PMCID: PMC7828129 DOI: 10.3390/antiox10010099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Traditional, complementary, and integrative medicine are globally accepted alternative methods for the treatment of diabetes mellitus (DM). However, the mechanism of anti-diabetic effects of Helianthus tuberosus L. remains unproven. In the present study, antioxidant and anti-diabetic activity of the tubers of H. tuberosus were studied in detail. Methanolic extracts of H. tuberosus tubers were subjected to solvent fractionation method by increasing the polarity of the solvent using n-hexane, and ethyl acetate. The obtained methanol extracts and its fractions were subjected to free radical scavenging activity (DPPH and ABTS assay) and in vitro enzyme (α-amylase and α-glucosidase) inhibition assay. Moreover, glucose uptake in insulin-resistant HepG2 cell line was analyzed. The preliminary phytochemical analysis confirmed the presence of phenolic and flavonoid compounds in the active fraction. The radical scavenging and in vitro diabetic related enzyme inhibitory activities were found to be dose dependent. The maximum ABTS+ and DPPH scavenging activity was documented in ethyl acetate fraction of the H. tuberosus followed by methanol extract, hexane fraction, and methanol fraction. We also found that H. tuberosus showed a less toxicity in mouse fibroblast cells and enhance the glucose uptake in insulin-resistant HepG2 cells. Besides, the ethyl acetate fraction of the H. tuberosus analyzed by UPLC-QTOF-MS-MS and GC/MS revealed the presence of phenolic compounds such as neochlorogenic acid, chlorogenic acid, caffeic acid, 5-O-(4-coumaroyl)-quinic acid, feruloylquinic acid, caffeoylquinic acid, isoxazolidine, salicylic acid β-D-glucoside, dicaffeoylquinic acid isomers, salvianolic acid derivative isomers, and 1,4 dicaffeoylquinic acid etc. Among the identified phytochemicals, six were chosen for molecular docking study to explore their its inhibitory interactions with α-amylase and α-glucosidase. Taken together, the findings of the present study suggested that phytocompounds of EAF were responsible for the significant in vitro antioxidant, wound-healing, and anti-diabetic activities.
Collapse
|
10
|
In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Sasaki H, Lyu Y, Nakayama Y, Nakamura F, Watanabe A, Miyakawa H, Nakao Y, Shibata S. Combinatorial Effects of Soluble, Insoluble, and Organic Extracts from Jerusalem Artichokes on Gut Microbiota in Mice. Microorganisms 2020; 8:microorganisms8060954. [PMID: 32599833 PMCID: PMC7356569 DOI: 10.3390/microorganisms8060954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Jerusalem artichokes contain high amounts of inulin, which is a prebiotic that supports digestive health, as well as a variety of insoluble fibers and caffeoylquinic acid. The individual impact of these components on gut microbiota is well known; however, the combinatorial effects are less clear. In this investigation, we fractionated Jerusalem artichokes into three parts (water-soluble extract, insoluble extract, and organic extract) and powdered them. Mice were fed a high-fat diet that included one or more of these extracts for 10 days, and then their cecal pH, cecal short-chain fatty acids (SCFAs), and fecal microbiota were evaluated. The combination of the water-soluble and organic extract decreased cecal pH and increased the concentration of SCFAs and led to dynamic changes in the composition of the gut microbiota. These results demonstrate that both the water-soluble and organic extracts in Jerusalem artichokes are bioactive substances that are capable of changing SCFA production and the composition of gut microbiota. Powdered Jerusalem artichokes, rather than inulin supplements, may be superior for promoting a healthy gut.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Yijin Lyu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Yuki Nakayama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Fumiaki Nakamura
- Laboratory of Chemical biology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (F.N.); (Y.N.)
| | - Aya Watanabe
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Hiroki Miyakawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Yoichi Nakao
- Laboratory of Chemical biology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (F.N.); (Y.N.)
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence: ; Tel.: +81-3-5369-7318
| |
Collapse
|
12
|
Gao J, Sun X, Zong Y, Yang S, Wang L, Liu B. Functional MYB transcription factor gene HtMYB2 is associated with anthocyanin biosynthesis in Helianthus tuberosus L. BMC PLANT BIOLOGY 2020; 20:247. [PMID: 32487142 PMCID: PMC7268318 DOI: 10.1186/s12870-020-02463-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tuber color is an important trait for Helianthus tuberosus L. (Jerusalem artichoke). Usually, purple tubers with high anthocyanin content are more nutritious than white tuber. But, the molecular mechanism underlying it is unknown. RESULTS In the current study, high-throughput RNA-sequencing was used to compare the transcriptomes between plants with tubers with red or white epidermis. Compared with the white-skinned tubers of cultivar QY3, anthocyanin biosynthesis structural genes had greater expression in the red-skinned tubers of cultivar QY1, indicating that the anthocyanin biosynthesis pathway was activated in 'QY1'; quantitative PCR confirmed this difference in expression. HtMYB2 (Unigene44371_All) was the only MYB transcription factor, homologous to the MYB transcription factor regulating anthocyanin biosynthesis, expressed in the red tuber epidermis of 'QY1'. The anthocyanin concentration in the root, stem, leaf, flower, and tuber epidermis of 'QY1' was higher than in 'QY3', especially tuber epidermis. Correspondingly, HtMYB2 had greater expression in these tissues of 'QY1' than in 'QY3'. The expression of HtMYB2 was associated with anthocyanin accumulation in the different tissues. Overexpression of HtMYB2 activated the anthocyanin biosynthesis pathway, accumulating the pigment in leaves of transgenic tobacco, supporting the model that HtMYB2 regulated anthocyanin biosynthesis. Further experiments found that HtMYB2 had the same coding sequence and genomic sequence in 'QY1' and 'QY3', but that there were several single nucleotide polymorphisms and one insertion-deletion (indel) mutation of 21 nucleotides in the promoter region between the two alleles. The deletion of three nucleotides "AAA" made the promoter of 'QY1' predicted to contain one more possible promoter region. A specific primer, based on the indel, could differentiate between cultivars with red or white tuber epidermis. The genetic variation in HtMYB2 was associated with the tuber skin color in a natural population. CONCLUSIONS RNA-seq can successfully isolate the candidate gene (HTMYB2) controlling anthocyanin biosynthesis in purple epidermis of Jerusalem artichoke tuber. HTMYB2 can regulate anthocyanin biosynthesis in plants and is closely related to the formation of purple phenotype in tubers. This study should be useful in understanding the genetic mechanism underlying different tuber skin colors and in breeding new H. tuberosus cultivars with different tuber skin colors.
Collapse
Affiliation(s)
- Jieming Gao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Xuemei Sun
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Shipeng Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Lihui Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|