1
|
Bratthäll T, Figueira J, Nording ML. Influence of divalent cations on the extraction of organic acids in coffee determined by GC-MS and NMR. Heliyon 2024; 10:e26625. [PMID: 38434259 PMCID: PMC10907646 DOI: 10.1016/j.heliyon.2024.e26625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
The perceived flavor of coffee varies depending on the composition of the brewing water, and the influencing mechanisms are poorly understood. To investigate the effect of dissolved divalent cations on the extraction of organic acids in coffee, magnesium and calcium chloride salts were added pre- and post-brew. Citric, malic, lactic and quinic acid were analyzed using gas chromatography - mass spectrometry and nuclear magnetic resonance techniques. At concentrations typically found in drinking water, the salts resulted in limited variation of the acid content, while ten-fold higher salt concentrations produced more pronounced variations. Comparisons between pre- and post-brew additions showed similar acid content in most cases, suggesting that extraction of acids proceeds independent of the water composition. Interactions taking place post-brew may, however, influence the perceived flavor. A scientific basis for water quality recommendations in the coffee industry is long overdue and this work provides experimental and analytical contributions to continued research.
Collapse
Affiliation(s)
- Tove Bratthäll
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - João Figueira
- Department of Chemistry, SciLife Lab, Umeå University, 901 87, Umeå, Sweden
| | | |
Collapse
|
2
|
Jiang Y, Sun J, Chandrapala J, Majzoobi M, Brennan C, Zeng XA, Sun B. Current situation, trend, and prospects of research on functional components from by-products of baijiu production: A review. Food Res Int 2024; 180:114032. [PMID: 38395586 DOI: 10.1016/j.foodres.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| | - Jayani Chandrapala
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Charles Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Marinaki M, Mouskeftara T, Arapitsas P, Zinoviadou KG, Theodoridis G. Metabolic Fingerprinting of Muscat of Alexandria Grape Musts during Industrial Alcoholic Fermentation Using HS-SPME and Liquid Injection with TMS Derivatization GC-MS Methods. Molecules 2023; 28:4653. [PMID: 37375206 DOI: 10.3390/molecules28124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Muscat of Alexandria is one of the most aromatic grape cultivars, with a characteristic floral and fruity aroma, producing popular appellation of origin wines. The winemaking process is a critical factor contributing to the quality of the final product, so the aim of this work was to study metabolomic changes during the fermentation of grape musts at the industrial level from 11 tanks, 2 vintages, and 3 wineries of Limnos Island. A Headspace Solid-Phase Microextraction (HS-SPME) and a liquid injection with Trimethylsilyl (TMS) derivatization Gas Chromatography-Mass Spectrometry (GC-MS) methods were applied for the profiling of the main volatile and non-volatile polar metabolites originating from grapes or produced during winemaking, resulting in the identification of 109 and 69 metabolites, respectively. Multivariate statistical analysis models revealed the differentiation between the four examined time points during fermentation, and the most statistically significant metabolites were investigated by biomarker assessment, while their trends were presented with boxplots. Whilst the majority of compounds (ethyl esters, alcohols, acids, aldehydes, sugar alcohols) showed an upward trend, fermentable sugars, amino acids, and C6-compounds were decreased. Terpenes presented stable behavior, with the exception of terpenols, which were increased at the beginning and were then decreased after the 5th day of fermentation.
Collapse
Affiliation(s)
- Maria Marinaki
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- BiomicAUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Thomai Mouskeftara
- BiomicAUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- Department of Medicine, Aristotle University, 54124 Thessaloniki, Greece
| | - Panagiotis Arapitsas
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 12243 Athens, Greece
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 Trento, Italy
| | | | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- BiomicAUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
4
|
A Concise Profile of Gallic Acid-From Its Natural Sources through Biological Properties and Chemical Methods of Determination. Molecules 2023; 28:molecules28031186. [PMID: 36770851 PMCID: PMC9919014 DOI: 10.3390/molecules28031186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Nature is a valuable source of anti-oxidants that have a health-promoting effect by inhibiting various undesirable changes leading to cell degradation and, consequently, potential disease ailments. One of them is gallic acid which has been used as a healing agent since ancient times. Currently, due to various beneficial properties, this compound is considered to be one of the main phenolic acids of great importance in numerous industries. It is commonly used as a substance protecting against the harmful effects of UV radiation, an astringent in cosmetic preparations, and a preservative in food products. Therefore, gallic acid is now deemed essential for both human health and industry. Increasingly better methods of its isolation and analysis are being developed, and new solutions are being sought to increase its production. This review, presenting a concise characterization of gallic acid, updates the knowledge about its various biological activities and methods used for its isolation and determination, including chromatographic and non-chromatographic methods.
Collapse
|
5
|
Membrane-based inverted liquid–liquid extraction of organochlorine pesticides in aqueous samples: evaluation, merits, and demerits. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
[Determination of 10 organic acids in alcoholic products by ion chromatography-tandem mass spectrometry]. Se Pu 2022; 40:1128-1135. [PMID: 36450353 PMCID: PMC9727743 DOI: 10.3724/sp.j.1123.2022.01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A method was developed for the determination of 10 organic acids in liquor, yellow rice wine, and dry red wine by ion chromatography-triple quadrupole mass spectrometry (IC-MS/MS). First, the liquor samples were diluted with deionized water, degassed with nitrogen, and analyzed by IC-MS/MS. Then, the yellow rice wine and dry red wine samples were purified with different solid-phase extraction cartridges. Finally, the GCB solid-phase extraction cartridge was selected for purification, diluted with deionized water, and analyzed by IC-MS/MS. The samples were separated using a Dionex IonPac AS11-HC anion analysis column with high capacity and strong hydrophilicity, with an KOH aqueous solution as the eluent, which was produced by an automatic generator for gradient elution. After being suppressed using a suppressor, the eluent was injected directly into the electrospray ionization tandem mass spectrometry (ESI-MS/MS), ionized in negative ion mode, detected in multiple reaction monitoring (MRM) mode, and quantified using an external standard method. Oxalic acid, fumaric acid, maleic acid, malic acid, tartaric acid, citric acid, quinic acid, and aconitic acid showed good linear relationships in the range of 0.05-2 mg/L. Succinic acid and lactic acid showed good linearities in the range of 0.05-5 mg/L and 0.05-10 mg/L, respectively. The correlation coefficients (r2) were >0.99. The limits of detection (LODs) and limits of quantification (LOQs) were 1.0-8.0 μg/L and 3.5-26.5 μg/L, respectively. The average recoveries ranged from 83.0% to 112.1%, and the relative standard deviations (RSDs) were <9.1% in spiked samples at three levels. The proposed method allowed easy pretreatment without using organic solvents or derivatization processing. Overall, the proposed method is accurate, rapid, sensitive, and it is suitable for the qualitative and quantitative analyses of the 10 organic acids in three wine samples. Moreover, it can be used for the determination of flavor and quality of alcoholic products.
Collapse
|
7
|
A green analytical method for the determination of polyphenols in wine by dispersive pipette extraction and LC-MS/MS. Food Chem 2022; 405:134860. [DOI: 10.1016/j.foodchem.2022.134860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
8
|
Comparison of the Effect of Cold Plasma with Conventional Preservation Methods on Red Wine Quality Using Chemometrics Analysis. Molecules 2022; 27:molecules27207048. [PMID: 36296642 PMCID: PMC9609338 DOI: 10.3390/molecules27207048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, the effect of cold plasma (CP) on the physicochemical and biological properties of red wine was investigated in comparison with the effects of the conventional preservation method and the combined method. In addition, the effect of storage time after the application of each of the analyzed methods was evaluated. The study examined the effects of the different preservation methods on the pH, color, phenolic content, antioxidant activity and microbiological purity of the red wine. Chemometric analysis was used to discover the relationship between the preservation method used and wine quality. In the wine samples tested, a reduction in phenolic compounds and a decrease in antioxidant activity were noted after storage. This effect was mildest for preservation methods with the addition of potassium metabisulphite and those in which a mixture of helium and nitrogen was used as the working gas. On a positive note, the CP treatment did not affect the color of the wine in a way perceptible to the consumer: ∆E*—1.12 (He/N2; 5 min). In addition, the lowest growth of microorganisms was detected in the CP-treated samples. This indicates the potential of cold plasma as an alternative method to the use of potassium metabisulfite in wine production, which may contribute to its wider use in the alcohol industry in the future.
Collapse
|
9
|
Fabjanowicz M, Simeonov V, Frankowski M, Wojnowski W, Płotka-Wasylka J. Multivariate Statistical Analysis for Mutual Dependence Assessment of Selected Polyphenols, Organic Acids and Metals in Cool-Climate Wines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196566. [PMID: 36235101 PMCID: PMC9573107 DOI: 10.3390/molecules27196566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Polyphenols, organic acids and metal ions are an important group of compounds that affect the human health and quality of food and beverage products, including wines. It is known that a specific correlation between these groups exist. While wines coming from the New World and the Old World countries are extensively studied, wines coming from cool-climate countries are rarely discussed in the literature. One of the goals of this study was to determine the elemental composition of the wine samples, which later on, together as polyphenols and organic acids content, was used as input data for chemometric analysis. The multivariate statistical approach was applied in order to find specific correlations between the selected group of compounds in the cool-climate wines and the features that distinguish the most and differ between red and white wines and rosé wines. Moreover, special attention was paid to resveratrol and its correlation with selected wine constituents.
Collapse
Affiliation(s)
- Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
- Correspondence: (M.F.); (J.P.-W.)
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1126 Sofia, Bulgaria
| | - Marcin Frankowski
- Deparment of Analytical and Environmental Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Wojciech Wojnowski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
- Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology (GUT), 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
- Correspondence: (M.F.); (J.P.-W.)
| |
Collapse
|
10
|
New Isolated Autochthonous Strains of S. cerevisiae for Fermentation of Two Grape Varieties Grown in Poland. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many commercial strains of the Saccharomyces cerevisiae species are used around the world in the wine industry, while the use of native yeast strains is highly recommended for their role in shaping specific, terroir-associated wine characteristics. In recent years, in Poland, an increase in the number of registered vineyards has been observed, and Polish wines are becoming more recognizable among consumers. In the fermentation process, apart from ethyl alcohol, numerous microbial metabolites are formed. These compounds shape the wine bouquet or become precursors for the creation of new products that affect the sensory characteristics and quality of the wine. The aim of this work was to study the effect of the grapevine varieties and newly isolated native S. cerevisiae yeast strains on the content of selected wine fermentation metabolites. Two vine varieties—Regent and Seyval blanc were used. A total of 16 different yeast strains of the S. cerevisiae species were used for fermentation: nine newly isolated from vine fruit and seven commercial cultures. The obtained wines differed in terms of the content of analyzed oenological characteristics and the differences depended both on the raw material (vine variety) as well as the source of isolation and origin of the yeast strain used (commercial vs. native). Generally, red wines characterized a higher content of tested analytes than white wines, regardless of the yeast strain used. The red wines are produced with the use of native yeast strains characterized by higher content of amyl alcohols and esters.
Collapse
|
11
|
Tıraş ZŞE, Okur HH, Günay Z, Yıldırım HK. Different approaches to enhance resveratrol content in wine. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv20223701013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol with antioxidant properties and possible beneficial effects on human health. Grapes, peanuts, berries, cacao beans and red wine contain resveratrol. Resveratrol attracts attention due to its bioactive properties, however, the concentration of this compound is not high in grape and wine. Therefore, different studies have been carried out to increase resveratrol level in these products. Several factors such as the grapevine variety, the climatic conditions and the viticultural practices used to create stress on the vine affect the level of resveratrol. Winemaking technologies applied during pre-fermentation, fermentation and post–fermentation stages could also have an effect on the concentration of this stilbene. In addition, recent studies have evaluated biotechnological approaches through the use of different bacteria and yeast strains to produce wine with increased resveratrol content. In this review, the most important factors contributing to increase the resveratrol concentration in grapes and wines are examined. Besides, analytical methods to determine resveratrol content in wine are addressed.
Collapse
|
12
|
Niedźwiedź I, Płotka-Wasylka J, Kapusta I, Simeonov V, Stój A, Waśko A, Pawłat J, Polak-Berecka M. The impact of cold plasma on the phenolic composition and biogenic amine content of red wine. Food Chem 2022; 381:132257. [PMID: 35121310 DOI: 10.1016/j.foodchem.2022.132257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
The effect of cold plasma (CP) on phenolic compound (PC) and biogenic amine (BA) contents of red wine was investigated for the first time. The influence of CP was compared with the effects of a wine preservation using potassium metabisulfite and a combined method. The PC profile was determined by UPLC-PDA-MS/MS while BAs using DLLME-GC-MS. Chemometric analysis also was used. The content of PCs was 3.1% higher in the sample preserved by CP treatment (5 min, helium/nitrogen) compared to a sample preserved by the addition of potassium metabisulfite (100 mg/L). On a positive note, CP treatment reduced the concentration of BAs in the wine samples. The lowest BA contents were recorded after 10 min of cold plasma (helium/oxygen) treatment with the addition of potassium metabisulfite (1120.85 μg/L). The results may promote interest in CP as a potential alternative method for the preservation of wine and other alcoholic beverages.
Collapse
Affiliation(s)
- Iwona Niedźwiedź
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, College of Natural Science, Rzeszów University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1126 Sofia, Bulgaria
| | - Anna Stój
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Adam Waśko
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Joanna Pawłat
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 38A Nadbystrzycka Street, 20-618 Lublin, Poland
| | - Magdalena Polak-Berecka
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland.
| |
Collapse
|
13
|
Madikizela LM, Tutu H, Cukrowska E, Chimuka L. Trends in Innovations and Recent Advances in Membrane Protected Extraction Techniques for Organics in Complex Samples. Crit Rev Anal Chem 2021; 53:1197-1208. [PMID: 34908490 DOI: 10.1080/10408347.2021.2013769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Membrane protected extraction is an ongoing innovation for isolation and pre-concentration of analytes from complex samples. The extraction process, clean-up and pre-concentration of analytes occur in a single step. The inclusion of solid sorbents such as molecularly imprinted polymers (MIPs) after membrane extraction ensures that selective double extraction occurs in a single step. The first step involves selective extraction using the membrane and diffused analytes are trapped on the solid sorbent enclosed in the membrane. No further clean-up is required even for very dirty samples like plant extracts and wastewaters samples. Sample clean-up occurs during extraction in the first process and not as additional step since matrix components are prevented from trapping on the sorbent. This can be referred to as prevention is better than cure approach. In this work, the analytical methods that employed membrane protected extraction for various organics such as pesticides, polycyclic aromatic hydrocarbons, and pharmaceuticals are reviewed. The designs of these analytical methods, their applications, advantages and drawbacks are discussed in this review. Literature suggests that the introduction of solid sorbents in membrane creates the much-needed synergy in selectivity. Previous reviews focused on membrane combinations with MIPs while discussing micro-solid-phase extraction. The scope of this review was broadened to include other sample preparation aspects such as membrane protected stir bar solvent extraction and membrane protected solid-phase microextraction. In addition, novel sample preparation methods for solid samples which include Soxhlet membrane protected molecular imprinted solid phase extraction and membrane protected ultra sound assisted extracted are discussed.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Pretoria, South Africa
| | - Hlanganani Tutu
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, South Africa
| | - Ewa Cukrowska
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Lo Fiego MJ, Lorenzetti AS, Silbestri GF, Domini CE. The use of ultrasound in the South Cone region. Advances in organic and inorganic synthesis and in analytical methods. ULTRASONICS SONOCHEMISTRY 2021; 80:105834. [PMID: 34814046 PMCID: PMC8608658 DOI: 10.1016/j.ultsonch.2021.105834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 05/25/2023]
Abstract
In organic and inorganic synthesis and in analytical methods, an external conventional heat source is usually applied to carry out a chemical reaction at a high temperature, or an extraction procedure. In the last decades, the use of ultrasound as an alternative energy source has become an interesting field of research in these topics in the South Cone region (Argentina, Chile, Uruguay, Southern Brazil and Paraguay). For this reason, the present review, covering the period 2009 to mid-2021, is a compilation of ultrasound-assisted synthetic and analytical methodologies.
Collapse
Affiliation(s)
- Marcos J Lo Fiego
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Anabela S Lorenzetti
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Gustavo F Silbestri
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina.
| | - Claudia E Domini
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina.
| |
Collapse
|
15
|
Mutyam S, Chilakala S, Tallapally M, Upadhyayula VVR. Gas chromatography-mass spectrometric determination of organic acids in fruit juices by multiwalled carbon nanotube-based ion-pair dispersive solid-phase extraction and in situ butylation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9165. [PMID: 34260110 DOI: 10.1002/rcm.9165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Fruit juices are naturally acidic, and the acidity is due to the formation of various organic acids formed in several metabolic processes. The content of acids varies due to various processing parameters during the preparation of fruit juices and their packaging for commercialization. Quantitative determination of organic acids provides the necessary information leading to changes occurred during processing. METHODS The organic acids were extracted by ion-pair dispersive solid-phase extraction by multiwalled carbon nanotubes and analyzed using gas chromatography-mass spectrometry (GC-MS) and in situ butylation. RESULTS The developed analytical method was validated, and the obtained results showed a linearity in the range of 0.5-5000 μg/L levels of the analytes with limit of detection and quantification values of 2-10 and 5-20 μg/L, respectively. The inter- and intra-day reproducibilities are less than 15% with 80%-98% recoveries and less than 20% matrix effect. The developed method was used for the quantitative determination of organic acids present in fresh and packaged apple, grape, orange, and pomegranate juice samples. The content of organic acids was observed in the range of 0.26-3793 μg/L. Pimelic acid was not detected in any of the analyzed fruit juices. Fumaric acid (FA) was observed to be a major organic diacid present in the natural fruit juices. The results indicated that the processing of fruit juices for packaging decreases the content of organic acids in fruits. CONCLUSIONS The developed GC-MS-based analytical method for the analysis of organic acids has good sensitivity and reproducibility for the quantitative determination of various organic acids in fruit juices. FA was observed to be the major carboxylic acid present in fruits. The processed juice samples possess the lowest concentration of organic acids, suggesting that processing has a significant effect on the concentration of organic acids in fruits.
Collapse
Affiliation(s)
- Satish Mutyam
- Analytical and Structural Chemistry Division, Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shireesha Chilakala
- Analytical and Structural Chemistry Division, Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maheshwari Tallapally
- Analytical and Structural Chemistry Division, Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijayasarathi V R Upadhyayula
- Analytical and Structural Chemistry Division, Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Wu J, Yang R, Liu J, Huang X. Easy fabrication of aminated graphene oxide functionalized magnetic nanocomposite for efficient preconcentration of phenolic acids prior to HPLC determination: Application in tea-derived wines. Talanta 2021; 228:122246. [PMID: 33773746 DOI: 10.1016/j.talanta.2021.122246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
In this study, aminated graphene oxide functionalized magnetic nanocomposite (AGMN) was facilely synthesized by one-pot hydrothermal approach and acted as the extraction phase of magnetic solid phase extraction (MSPE) of phenolic acids (PAs). Characterization results revealed that the AGMN possessed satisfying saturation magnetism and abundant functional groups. Under the optimal extraction parameters, the proposed AGMN/MSPE presented high enrichment capability to PAs. Sensitive and dependable method for measurement of PAs in wine was proposed by the combination of AGMN/MSPE and HPLC/DAD. Limits of detection and limits of quantification were in the ranges of 0.031-0.23 μg/L and 0.10-0.78 μg/L, respectively, and the RSDs for approach precision varied from 1.8% to 8.9%. Recoveries at low, medium and high fortified levels varied from 84.6% to 116%. The suggested method was used to quantify investigated PAs in ten kinds of Tieguanyin tea-derived wines, and found the contents of PAs in wines were related to the quality of tea-leaves and alcohol content.
Collapse
Affiliation(s)
- Jiangyi Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Ruichen Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Jun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xiaojia Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
17
|
Qiu X, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in pretreatment and analysis of organic Acids: An update since 2010. Food Chem 2021; 360:129977. [PMID: 34023712 DOI: 10.1016/j.foodchem.2021.129977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organic acids, as an important component of food, have great influence on the flavor, texture, freshness of food. By lowering the pH of food to bacteriostatic acidity, organic acids are also used as additives and preservatives. Because organic acids are crucial to predict and evaluate food maturity, production and quality control, the rapid and sensitive determination methods of organic acids are necessary. This review aims to summarize and update the progress of the determination of organic acids in food samples. Pretreatment methods include simple steps (e.g., "dilute and shoot," protein precipitation, filtration, and centrifugation) and advanced microextraction methods (e.g., hollow fiber liquid phase microextraction, stir bar sorptive extraction and dispersive micro-solid phase extraction). Advances in novel materials (nanomaterial), solvents (ionic liquids and supercritical fluids) and hybrid methods are clearly displayed in detail. Continuous progress which has been made in electrochemical method, two-dimensional chromatography, high resolution mass is thoroughly illustrated.
Collapse
Affiliation(s)
- Xin Qiu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
18
|
Soceanu A, Dobrinas S, Sirbu A, Manea N, Popescu V. Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143543. [PMID: 33199012 DOI: 10.1016/j.scitotenv.2020.143543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The complex composition of grapes as well as the quite large variations of each component affect the processing thereof differently and at the same time influence the yield in must, its quality and the wine product; they also influence production losses, along with the quality and quantity of by-products. Vinification wastes cause ecological problems because the neutralization and use of fermentative wastes mixed with different compounds present a danger to the environment and to the health of the population. The ecological measures of protection of the environmental factors are very important, especially the economic efficiency obtained through the recovery of the by-products. This paper focuses on the possibilities of using the by-products obtained from the wine making process, based on the fact that this drink is the most widely known in the world, with the highest percentage in terms of beverage production and implicitly with the largest quantity of by-products obtained. The valorization of these by-products leads to obtaining very valuable products both from a nutritional and industrial point of view. Experimentally, the aim was to determine the physical and chemical characteristics of different types of grape pomace and must sampled from a winery in Romania. Thus, the determination of total acidity, conductivity, pH, total content of phenolic compounds, total nitrogen and total content of pectic substances was aimed. The experimental values obtained have shown that grape pomace is a valuable by-product of the wine industry and its valorization demonstrates an important economic efficiency.
Collapse
Affiliation(s)
- Alina Soceanu
- "Ovidius" University of Constanta, Chemistry and Chemical Engineering Department, 900527 Constanta, Romania.
| | - Simona Dobrinas
- "Ovidius" University of Constanta, Chemistry and Chemical Engineering Department, 900527 Constanta, Romania.
| | - Anca Sirbu
- Constanta Maritime University, Department of Fundamental Sciences and Humanities, 900663 Constanta, Romania.
| | - Natalia Manea
- University POLITEHNICA of Bucharest, Economic Engineering Department, 060042 Bucharest, Romania.
| | - Viorica Popescu
- "Ovidius" University of Constanta, Chemistry and Chemical Engineering Department, 900527 Constanta, Romania.
| |
Collapse
|
19
|
Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021; 26:molecules26030718. [PMID: 33573150 PMCID: PMC7866523 DOI: 10.3390/molecules26030718] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Wine is one of the most consumed beverages around the world. It is composed of alcohols, sugars, acids, minerals, proteins and other compounds, such as organic acids and volatile and phenolic compounds (also called polyphenols). Polyphenols have been shown to be highly related to both (i) wine quality (color, flavor, and taste) and (ii) health-promoting properties (antioxidant and cardioprotective among others). Polyphenols can be grouped into two big families: (i) Flavonoids, including anthocyanidins, flavonols, flavanols, hydrolysable and condensed tannins, flavanones, flavones and chalcones; and (ii) Non-flavonoids, including hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, tyrosol and hydroxytyrosol. Each group affects in some way the different properties of wine to a greater or a lesser extent. For that reason, the phenolic composition can be managed to obtain singular wines with specific, desirable characteristics. The current review presents a summary of the ways in which the phenolic composition of wine can be modulated, including (a) invariable factors such as variety, field management or climatic conditions; (b) pre-fermentative strategies such as maceration, thermovinification and pulsed electric field; (c) fermentative strategies such as the use of different yeasts and bacteria; and (d) post-fermentative strategies such as maceration, fining agents and aging. Finally, the different extraction methods and analytical techniques used for polyphenol detection and quantification have been also reviewed.
Collapse
|
20
|
Sajid M, Kabeer M, Falath W. Development of Membrane-Based Inverted Liquid-Liquid Extraction for the Simultaneous Extraction of Eight Metals in Seawater before ICP-OES Analysis. Molecules 2020; 25:E3395. [PMID: 32727030 PMCID: PMC7435372 DOI: 10.3390/molecules25153395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, we developed an extraction technique that can handle simple as well as complex matrixed liquid (aqueous) samples. In the standard liquid-liquid extraction, it is quite challenging to deal with complex liquid samples as they may complicate the process of phase separation and may lead to the formation of multiple layers. To resolve this issue, we have proposed a simple but unique idea that suggests the packing of the liquid samples inside a porous membrane bag. The edges of the membrane bag can be sealed using an electrical heat-sealer. The porous membrane bag filled with the liquid sample was immersed in an extraction solvent, and the extraction process was assisted by mechanical shaking. In order to demonstrate the proof of concept, a method was developed for the extraction of metals from seawater samples. The pH-adjusted sample, along with the complexing reagent, was packed inside the porous membrane bag, and the chelated complex was then extracted by immersing and shaking the bag inside the organic solvent. The solvent was then evaporated, and the chelated complex was dissolved/digested in acid with the aid of the heat. The final extract was subjected to Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analysis. The proposed method was used for extraction of eight metals (Cd, Co, Cu, Mo, Ni, Pb, V and Zn) from seawater samples and good extraction recoveries (75-94%) were obtained.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.K.); (W.F.)
| | - Muhamed Kabeer
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.K.); (W.F.)
| | - Wail Falath
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.K.); (W.F.)
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
21
|
Kubica P. Ultrasound-Assisted Solvent Extraction of a Porous Membrane Packed Sample for the Determination of Tobacco-Specific Nitrosamines in the Replacement Liquids for E-Cigarettes. Molecules 2019; 24:E4618. [PMID: 31861109 PMCID: PMC6943691 DOI: 10.3390/molecules24244618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The content of tobacco-specific nitrosamines (TSNAs) possessing carcinogenic properties has been an important area of research since replacement liquids were introduced for e-cigarettes. A method for determining N'-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N'-nitrosoanatabine (NAT), and N'-nitrosoanabasine (NAB) in replacement liquids for electronic cigarettes was developed using liquid chromatography-tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS) in the multiple reaction monitoring mode. The sample preparation of replacement liquids was accomplished via the ultrasound-assisted solvent extraction of a porous membrane packed sample. The sample preparation proved to be successful in extracting the analytes, with recoveries from 87% to 105%, with coefficients of variation < 4.9%. Moreover, the linearity and limits of detection and quantitation (LOD, LOQ), together with repeatability and accuracy, were determined for the developed method. The proposed sample preparation and developed chromatographic method were successfully applied to the determination of TSNAs in 9 replacement liquid samples. The NNK and NNN were found to be most frequently detected (89 and 67%, respectively), with concentration ranges from 1.2-54.3 ng/mL and 4.1-30.2 ng/mL, respectively, while NAT was detected with frequency of 22% with range 1.7-2.5 ng/mL and NAB were found to be below the LOD in all samples.
Collapse
Affiliation(s)
- Paweł Kubica
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| |
Collapse
|