1
|
Kukula-Koch W, Dycha N, Lechwar P, Lasota M, Okoń E, Szczeblewski P, Wawruszak A, Tarabasz D, Hubert J, Wilkołek P, Halabalaki M, Gaweł-Bęben K. Vaccinium Species-Unexplored Sources of Active Constituents for Cosmeceuticals. Biomolecules 2024; 14:1110. [PMID: 39334876 PMCID: PMC11430151 DOI: 10.3390/biom14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The genus Vaccinium is represented by shrubs growing in a temperate climate that have been used for ages as traditional remedies in the treatment of digestive problems, in diabetes, renal stones or as antiseptics due to the presence of polyphenols (anthocyanins, flavonoids and tannins) in their fruits and leaves. Recent studies confirm their marked potential in the treatment of skin disorders and as skin care cosmetics. The aim of this review is to present the role of Vaccinium spp. as cosmetic products, highlight their potential and prove the biological properties exerted by the extracts from different species that can be useful for the preparation of innovative cosmetics. In the manuscript both skin care and therapeutic applications of the representatives of this gender will be discussed that include the antioxidant, skin lightening, UV-protective, antimicrobial, anti-inflammatory, and chemopreventive properties to shed new light on these underestimated plants.
Collapse
Affiliation(s)
- Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Natalia Dycha
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Paulina Lechwar
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Magdalena Lasota
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland;
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Dominik Tarabasz
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | | | - Piotr Wilkołek
- Department of Clinical Diagnostics and Veterinary Dermatology, University of Life Sciences in Lublin, 32 Gleboka Str., 20-612 Lublin, Poland
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| |
Collapse
|
2
|
Mazurek M, Siekierzyńska A, Piechowiak T, Spinardi A, Litwińczuk W. Comprehensive Analysis of Highbush Blueberry Plants Propagated In Vitro and Conventionally. Int J Mol Sci 2023; 25:544. [PMID: 38203713 PMCID: PMC10779370 DOI: 10.3390/ijms25010544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
In vitro culture allows the production of numerous plants with both desirable and undesirable traits. To investigate the impact of the propagation method on highbush blueberry plants, an analysis was performed on four groups of differentially propagated plants: in vitro with axillary (TC-Ax) or adventitious shoots (TC-Ad), conventionally (SC) and using a mixed method (TC/SC). The analysis included plant features (shoot length and branching, chlorophyll and fluorescence and DNA methylation) and fruit properties (antioxidant compounds). The data obtained indicated significant differences between plants propagated conventionally and in vitro, as well as variations among plants derived from in vitro cultures with different types of explants. SC plants generally exhibited the lowest values of morphological and physiological parameters but produced fruits richest in antioxidant compounds. TC/SC plants were dominant in length, branching and fluorescence. Conversely, TC-Ax plants produced fruits with the lowest levels of antioxidant compounds. The methylation-sensitive amplified polymorphism (MSAP) technique was employed to detect molecular differences. TC-Ad plants showed the highest methylation level, whereas SC plants had the lowest. The overall methylation level varied among differentially propagated plants. It can be speculated that the differences among the analysed plants may be attributed to variations in DNA methylation.
Collapse
Affiliation(s)
- Marzena Mazurek
- Department of Physiology and Plant Biotechnology, Institute of Agricultural Sciences, Environment Management and Protection University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland; (A.S.)
| | - Aleksandra Siekierzyńska
- Department of Physiology and Plant Biotechnology, Institute of Agricultural Sciences, Environment Management and Protection University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland; (A.S.)
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland;
| | - Anna Spinardi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Wojciech Litwińczuk
- Department of Physiology and Plant Biotechnology, Institute of Agricultural Sciences, Environment Management and Protection University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland; (A.S.)
| |
Collapse
|
3
|
Liu M, Bai M, Yue J, Fei X, Xia X. Integrating transcriptome and metabolome to explore the growth-promoting mechanisms of GABA in blueberry plantlets. FRONTIERS IN PLANT SCIENCE 2023; 14:1319700. [PMID: 38186593 PMCID: PMC10768180 DOI: 10.3389/fpls.2023.1319700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Tissue culture technology is the main method for the commercial propagation of blueberry plants, but blueberry plantlets grow slowly and have long growth cycles under in vitro propagation, resulting in low propagation efficiency. In addition, the long culturing time can also result in reduced nutrient content in the culture medium, and the accumulation of toxic and harmful substances that can lead to weak growth for the plantlets or browning and vitrification, which ultimately can seriously reduce the quality of the plantlets. Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that can improve plant resistance to various stresses and promote plant growth, but the effects of its application and mechanism in tissue culture are still unclear. In this study, the effects of GABA on the growth of in vitro blueberry plantlets were analyzed following the treatment of the plantlets with GABA. In addition, the GABA-treated plantlets were also subjected to a comparative transcriptomic and metabolomic analysis. The exogenous application of GABA significantly promoted growth and improved the quality of the blueberry plantlets. In total, 2,626 differentially expressed genes (DEGs) and 377 differentially accumulated metabolites (DAMs) were detected by comparison of the control and GABA-treated plantlets. Most of the DEGs and DAMs were involved in carbohydrate metabolism and biosynthesis of secondary metabolites. The comprehensive analysis results indicated that GABA may promote the growth of blueberry plantlets by promoting carbon metabolism and nitrogen assimilation, as well as increasing the accumulation of secondary metabolites such as flavonoids, steroids and terpenes.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Xia
- Plant Cell and Genetic Engineering Laboratory, School of Biological Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
4
|
Le KC, Johnson S, Aidun CK, Egertsdotter U. In Vitro Propagation of the Blueberry 'Blue Suede™' ( Vaccinium hybrid) in Semi-Solid Medium and Temporary Immersion Bioreactors. PLANTS (BASEL, SWITZERLAND) 2023; 12:2752. [PMID: 37570906 PMCID: PMC10421453 DOI: 10.3390/plants12152752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
The production of blueberries for fresh and processed consumption is increasing globally and has more than doubled in the last decade. Blueberry is grown commercially across a variety of climates in over 30 countries. The major classes of plants utilized for the planting and breeding of new cultivars are highbush, lowbush, half-high, Rabbiteye, and Southern highbush. Plants can be propagated by cuttings or in vitro micropropagation techniques. In vitro propagation offers advantages for faster generation of a large number of disease-free plants independent of season. Labor costs for in vitro propagation can be reduced using new cultivation technology and automation. Here, we test and demonstrate successful culture conditions and medium compositions for in vitro initiation, multiplication, and rooting of the Southern highbush cultivar 'Blue Suede™' (Vaccinium hybrid).
Collapse
Affiliation(s)
- Kim-Cuong Le
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA 30332-0620, USA; (K.-C.L.); (S.J.); (C.K.A.)
| | - Shannon Johnson
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA 30332-0620, USA; (K.-C.L.); (S.J.); (C.K.A.)
| | - Cyrus K. Aidun
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA 30332-0620, USA; (K.-C.L.); (S.J.); (C.K.A.)
- Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA 30332-0620, USA
| | - Ulrika Egertsdotter
- Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA 30332-0620, USA
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Center (UPSC), Swedish University of Agricultural Science (SLU), 901-83 Umea, Sweden
| |
Collapse
|
5
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
6
|
Debnath SC, Ghosh A. Phenotypic variation and epigenetic insight into tissue culture berry crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1042726. [PMID: 36600911 PMCID: PMC9806182 DOI: 10.3389/fpls.2022.1042726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Berry crops, a nutrient powerhouse for antioxidant properties, have long been enjoyed as a health-promoting delicious food. Significant progress has been achieved for the propagation of berry crops using tissue culture techniques. Although bioreactor micropropagation has been developed as a cost-effective propagation technology for berry crops, genetic stability can be a problem for commercial micropropagation that can be monitored at morphological, biochemical, and molecular levels. Somaclonal variations, both genetic and epigenetic, in tissue culture regenerants are influenced by different factors, such as donor genotype, explant type and origin, chimeral tissues, culture media type, concentration and combination of plant growth regulators, and culture conditions and period. Tissue culture regenerants in berry crops show increased vegetative growth, rhizome production, and berry yield, containing higher antioxidant activity in fruits and leaves that might be due to epigenetic variation. The present review provides an in-depth study on various aspects of phenotypic variation in micropropagated berry plants and the epigenetic effects on these variations along with the role of DNA methylation, to fill the existing gap in literature.
Collapse
Affiliation(s)
- Samir C. Debnath
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Amrita Ghosh
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
7
|
Jiang H, Wu F, Jiang X, Pu YF, Shen LR, Wu CY, Bai HJ. Antioxidative, cytoprotective and whitening activities of fragrant pear fruits at different growth stages. Front Nutr 2022; 9:1020855. [PMID: 36245497 PMCID: PMC9562439 DOI: 10.3389/fnut.2022.1020855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Pear is one of the most popular fruits in the world. With the fruit ripening, a series of physiological changes have taken place in fragrant pear, but up to now, the research on the metabolism and biological activity of phenolic compounds in different growth stages of fragrant pear is still lacking. In this study, four kinds of Xinjiang pears were selected as research objects, and the changes of phenolic content, antioxidant capacity, cell protection and whitening activity during fruit development were analyzed. The results showed that the phenolic content and antioxidant capacity of four pear varieties presented a decreasing trend throughout the developmental stages. The phenolic content and antioxidant activity of the four pears in the young fruit stage were the highest, and the active ingredients of the Nanguo pear were higher than the other three pear fruits. Pear extract could protect cells by eliminating excessive ROS in cells, especially in young fruit stage. The western blot results showed that the extract of fragrant pear in the young fruit stage could inhibit the expression of TYR, TYR1 and MITF in B16 cells, and it was speculated that the extract of fragrant pear in the young fruit stage might have good whitening activity. Therefore, the findings suggest that young pear display a good antioxidant potential and could have a good application prospect in food preservation and health product industry.
Collapse
Affiliation(s)
- Hui Jiang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Fei Wu
- College of Life Sciences, Tarim University, Alar, China
| | - Xi Jiang
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
| | - Yun-Feng Pu
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Li-Rong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Cui-Yun Wu
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- *Correspondence: Cui-Yun Wu,
| | - Hong-Jin Bai
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, China
- Hong-Jin Bai,
| |
Collapse
|
8
|
Kumar N, Kaur B, Shukla S, Patel MK, Thakur MS, Kumar R, Chaurasia OP, Khatri M, Saxena S. Comparative analysis of phytochemical composition and anti-oxidant and anti-inflammatory benefits of Eruca sativa grown at high altitude than at lower altitude. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhang D, Ivane NM, Haruna SA, Zekrumah M, Elysé FKR, Tahir HE, Wang G, Wang C, Zou X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci 2022; 191:108842. [DOI: 10.1016/j.meatsci.2022.108842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
|
10
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Abou El-Dis GR, Zavdetovna KL, Nikolaevich AA, Abdelazeez WMA, Arnoldovna TO. Influence of light on the accumulation of anthocyanins in callus culture of Vaccinium corymbosum L. cv. Sunt Blue Giant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Huang HM, Ho CY, Chang GR, Shia WY, Lai CH, Chao CH, Wang CM. HPLC/ESI-MS and NMR Analysis of Chemical Constitutes in Bioactive Extract from the Root Nodule of Vaccinium emarginatum. Pharmaceuticals (Basel) 2021; 14:ph14111098. [PMID: 34832879 PMCID: PMC8622236 DOI: 10.3390/ph14111098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Vaccinium emarginatum Hayata is a medicinal plant that has been historically used in ethnopharmacy to treat diseases in Taiwan. The objective of this study is to evaluate the anti-cancer and anti-bacterial constitutes from the root nodule extract of V. emarginatum. The chemical composition of V. emarginatum fractions was analyzed by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and the chemical constitutes were isolated and structurally identified by nuclear magnetic resonance (NMR) spectroscopy. Bioassay-guided chromatography showed that the ethyl acetate (EA) fraction was bioactive on the hepatocellular carcinoma (HepG2). By LC-ESI-MS/MS analysis, twenty peaks of EA fraction were partially identified and the phytochemical investigation of the fractions led to the isolation and identification of protocatuchuic acid (1), epicatechin (2), catechin (3), procyanidin B3 (4), procyanidin A1 (5), hyperin (6), isoquercetin (7), quercetin (8), lupeol (9), beta-amyrin (10), and alpha-amyrin (11). Both procyanidin B3 and A1 exhibited anti-proliferative activity against HepG2 and gastric adenocarcinoma (AGS) cells at IC50 values between 38.4 and 41.1 μM and 79.4 and 83.8 μM, respectively. In addition, isoquercetin displayed the strongest anti-proliferative activity against the HepG2, lung carcinoma (A549), and AGS cell at 18.7, 24.6 and 68.5 μM, respectively. Among the triterpenoids, only lupeol showed the inhibitory activity against all tested tumor cell lines at IC50 values between 72.9 and 146.8 μM. Furthermore, procyanidins B3, A1 and isoquercetin displayed moderate anti-bacterial activity against Staphylococcus aureus. In conclusion, this study provides background information on the exploitation of V. emarginatum as a potential natural anti-cancer and anti-bacterial agent in pharmaceutical research.
Collapse
Affiliation(s)
- Hsiang-Ming Huang
- Neurosurgery Department, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan;
| | - Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan;
- Division of Family Medicine, Physical Examination Center, and Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600, Taiwan;
| | - Wei-Yau Shia
- Department of Veterinary Medicine, National Chung-Hsing University, 145 XingDa Road, Taichung 402, Taiwan; (W.-Y.S.); (C.-H.L.)
| | - Cheng-Hung Lai
- Department of Veterinary Medicine, National Chung-Hsing University, 145 XingDa Road, Taichung 402, Taiwan; (W.-Y.S.); (C.-H.L.)
| | - Chih-Hao Chao
- Division of Chest Medicine, Attending Physician of Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505, Taiwan
- Correspondence: (C.-H.C.); (C.-M.W.); Tel.: +886-975-617918 (C.-H.C.); +886-5-2732970 (C.-M.W.)
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600, Taiwan;
- Correspondence: (C.-H.C.); (C.-M.W.); Tel.: +886-975-617918 (C.-H.C.); +886-5-2732970 (C.-M.W.)
| |
Collapse
|
13
|
Erst AA, Gorbunov AB, Asbaganov SV, Tomoshevich MA, Banaev EV, Erst AS. Applying Biotechnology in the Propagation and Further Selection of Vaccinium uliginosum × ( V. corymbosum × V. angustifolium) Hybrids. PLANTS 2021; 10:plants10091831. [PMID: 34579364 PMCID: PMC8465175 DOI: 10.3390/plants10091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022]
Abstract
The most serious problem of intergeneric and interspecific hybridization is related to overcoming the reproductive isolation of different species. We assessed the efficiency of reproduction under in vitro conditions and the ex vitro growth capacity of interspecific hybrids of Vaccinium uliginosum × (V. corymbosum × V. angustifolium). The percentage of seed germination in in vitro culture was 88% for V. uliginosum, form No. 8 × (V. corymbosum × V. angustifolium), SC5-8, while it was 42% for V. uliginosum, form No. 8 × (V. corymbosum × V. angustifolium), ‘Northcountry’. The analysis of mean value showed that the multiplication rate increased and the shoot height decreased as the 2-isopentenyl adenine (2iP) concentration was increased in the nutrient medium of the studied hybrids. The maximum rate was achieved using 15 μM 2iP. A detailed analysis of the hybrids indicated that the hybrid variant reliably affected growth and development indicators. Inter simple sequence repeat analysis demonstrated that all analyzed hybrids inherited DNA fragments of the parent plants in various combinations, confirming their hybrid nature. Thus, the use of in vitro methods for the propagation and further selection of genotypes is demonstrated as being an effective approach for developing interspecific hybrids of V. uliginosum × (V. corymbosum × V. angustifolium).
Collapse
Affiliation(s)
- Anna A. Erst
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.G.); (S.V.A.); (M.A.T.); (E.V.B.); (A.S.E.)
- Correspondence: ; Tel.: +7-383-330-41-01
| | - Aleksey B. Gorbunov
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.G.); (S.V.A.); (M.A.T.); (E.V.B.); (A.S.E.)
| | - Sergey V. Asbaganov
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.G.); (S.V.A.); (M.A.T.); (E.V.B.); (A.S.E.)
| | - Maria A. Tomoshevich
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.G.); (S.V.A.); (M.A.T.); (E.V.B.); (A.S.E.)
| | - Evgeny V. Banaev
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.G.); (S.V.A.); (M.A.T.); (E.V.B.); (A.S.E.)
| | - Andrey S. Erst
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.G.); (S.V.A.); (M.A.T.); (E.V.B.); (A.S.E.)
- Laboratory of Herbarium, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
14
|
Yang Y, Dai L, Wu D, Dong L, Tu Y, Xie J, Luo X. In Vitro Propagation, Huperzine A Content and Antioxidant Activity of Three Genotypic Huperzia serrata. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061112. [PMID: 34072855 PMCID: PMC8226668 DOI: 10.3390/plants10061112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 05/24/2023]
Abstract
Huperzia serrata is a traditional herb and endangered Chinese medicinal material, which has attracted much attention due to its production of Huperzine A (HupA). In vitro propagation of H. serrata is considered a new way to relieve the resource pressure of H. serrata. In this study, three different genotypic wild H. serrata were used for in vitro propagation. Then, the antioxidant activity and the content of HupA in the regenerated H. serrata were investigated. The results showed the survival rate of the explant was increased to 25.37% when using multiple sterilization processes. The best induction medium for H. serrata was the Schenk and Hildebrandt (SH) medium supplemented with 0.5 mg·L-1 Naphthalene acetic acid (NAA) and 0.1 mg·L-1 2,4-Dichlorophenoxyacetic acid (2,4-D), where the regeneration rate of the explant was to 57.04%. The best proliferation medium was the SH medium with NAA (1.0 mg·L-1), as the biomass of in vitro tissue increased 164.17 ± 0.41 times. High-performance liquid chromatography analysis showed that the in vitro culture of three genotypes could produce HupA and the content of HupA was 53.90-87.17 µg·g-1. The antioxidant experiment showed that the methanol extract of in vitro H. serrata had higher antioxidant activity than that of wild H. serrata. This study provides a reliable in vitro H. serrata culture protocol and laid an important foundation for the antioxidant capacity of the thallus and the content of HupA.
Collapse
|
15
|
Mishra MK, Pandey S, Niranjan A, Misra P. Comparative analysis of phenolic compounds from wild and in vitro propagated plant Thalictrum foliolosum and antioxidant activity of various crude extracts. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Genetic Diversity of Blueberry Genotypes Estimated by Antioxidant Properties and Molecular Markers. Antioxidants (Basel) 2021; 10:antiox10030458. [PMID: 33804143 PMCID: PMC8001406 DOI: 10.3390/antiox10030458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022] Open
Abstract
Blueberries (Vaccinium spp.) have gained much attention worldwide because of their potential health benefits and economic importance. Genetic diversity was estimated in blueberry hybrids, wild clones and cultivars by their antioxidant efficacy, total phenolic and flavonoid contents, and express sequence tag–simple sequence repeat (SSR) (EST–SSR), genomic (G)–SSR and express sequence tag–polymerase chain reaction (EST–PCR) markers. Wide diversity existed among the genotypes for antioxidant properties, with the highest variation for DPPH radical scavenging activity (20-fold), followed by the contents of total flavonoids (16-fold) and phenolics (3.8-fold). Although a group of 11 hybrids generated the maximum diversity for antioxidant activity (15-fold), wild clones collected from Quebec, Canada, had the maximum variation for total phenolic (2.8-fold) and flavonoid contents (6.9-fold). Extensive genetic diversity was evident from Shannon’s index (0.34 for EST–SSRs, 0.29 for G–SSR, 0.26 for EST–PCR) and expected heterozygosity (0.23 for EST–SSR, 0.19 for G–SSR, 0.16 for EST–PCR). STRUCTURE analysis separated the genotypes into three groups, which were in agreement with principal coordinate and neighbour-joining analyses. Molecular variance suggested 19% variation among groups and 81% among genotypes within the groups. Clustering based on biochemical data and molecular analysis did not coincide, indicating a random distribution of loci in the blueberry genome, conferring antioxidant properties. However, the stepwise multiple regression analysis (SMRA) revealed that 17 EST–SSR, G–SSR and EST–PCR markers were associated with antioxidant properties. The study is valuable to breeding and germplasm conservation programs.
Collapse
|
17
|
Hunková J, Gajdošová A, Szabóová M. Effect of Mesos Components (MgSO 4, CaCl 2, KH 2PO 4) on In Vitro Shoot Growth of Blackberry, Blueberry, and Saskatoon. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9080935. [PMID: 32722012 PMCID: PMC7464212 DOI: 10.3390/plants9080935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/11/2020] [Accepted: 07/22/2020] [Indexed: 05/14/2023]
Abstract
Berry fruit species are, in many countries, considered biologically and economically valuable and important species of small fruits. The aim of this work was to examine the influence of either decreased or increased mesos concentrations (MgSO4, CaCl2, and KH2PO4) on shoot multiplication of five cultivars of three small fruit species (Amelanchier alnifolia var. cusickii, Rubus fruticosus 'Black Satin' and 'Loch Ness', and Vaccinium corymbosum 'Brigitta Blue' and 'Toro'). Mesos nutrients were manipulated from half to four times their base concentration. The results indicate that mesos manipulation significantly influences the number and length of shoots in most of the studied cultivars. The greatest multiplication rate for A. alnifolia was achieved with tripled mesos, whereas 'Black Satin' and 'Loch Ness' reacted positively to a lower (1-2x) concentration of mesos. Decreasing the concentration of mesos to half led to worse quality in both blackberry and Saskatoon shoots. 'Brigitta Blue' was more sensitive to greater mesos concentrations compared to 'Toro'. Optimizing the mineral nutrition of plants cultivated in vitro enhances their multiplication rate and contributes to a higher production of good quality plantlets.
Collapse
|